MySQL Internals Manual

MySQL Internals Manual

Abstract

Thisisthe MySQL Internals Manual.

Document generated on:2006-05-16 (revision: 2100)
Copyright 1998-2006 MySQL AB

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: Y ou may
create a printed copy of this documentation solely for your own personal use. Conversion to other formatsis allowed as long as the
actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any me-
dia, except if you distribute the documentation in a manner similar to how MySQL disseminates it (that is, electronically for down-
load on a website with the software) or on a CD-ROM or similar medium, provided however that the documentation is dissemin-
ated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this doc-
umentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of
MySQL AB. MySQL AB reserves any and all rights to this documentation not expressly granted above.

Please email <docs@rysql . com> for more information or if you are interested in doing a translation.

Table of Contents

1= = o S Vii
1. A Guided Tour Of The MySQL SOUrCE COUEuiieieiiiieiiieeeeii e 1
2.CoUING GUIEIINGES ...cenieee et e e e e 23
TN I 0T T @)]0 0 1= 33
3.1. Thel ndex Merge JOINTYPE ..ciuuiiii e e et e e e e e e e e eaes 44

I N @ V1= PP 44

3.1.2. IndeX Merge OPLIMIZENocieeeieeeeiee et 44

3.1.3. Row Retrieval AIQOrithmcoooiiiiiiiiiii e 46

4. Important Algorithms and SEFUCLUIEScoeueiiiii e 47
A0 TREHEM ClESS ..t e e 47

4.2. How MySQL DoesSorting (f i | €SOrt) .oveeeiviiiiiiiii e, 48

N = TU 1 0= o PP 49

4.4. HOW MYSQL DOES CACNINGevuiiiiiiieeieii ettt 49

4.5. How MySQL Usesthe Join Buffer Cacheoviiiiiiiiiiiiie e 50

4.6. How MySQL Handles FLUSH TABLESccoviiiiiiiiieeiiie e 51

A7, FU-TEXE SEAICN ..oeeee e 51

4.8. FLOAT and DOUBLE datatypes and their representation.ccccccvevevevneeennnn. 56

e R I 0= o LSRR 60

4.10. Error flags and fUNCLIONSiiiiiiiiiii e 61

4.11. Functionsin the mySYs Library ..o 62

R 2 10 7= 1o 1S 65

5. How MySQL Performs Different SEleCtScoviiiiiiiii e, 66
5.1. Steps of SElECt EXECULIONivviiiiiii e e e e e e 66
5.2.S€l1 €Ct _reSUlIt ClaSs ..cuuiiiiiiiiieee e 66
5.3.SI MPLE or PRI MARY SELECT ..o 67

5.4. Structure Of COMPIEX SEIECEoevuiiiiiiiie e 67

5.5. Non-Subquery UNI ONEXECULIONc.uuiiiiiiiiiiiieeei e 68

5.6. Derived Table EXECULIONc.uiiiiiiiieii e 69

LIS oo 1= = 69

5.8. SINGIE SAIECEL ENQINE . .o.viiiiiieei et e e e e e e e eees 70

5.9. UNION ENGING ..ttt ettt e e e e e e enans 70

5.10. SPECial ENQINESoveiiiiii et 71

5.10. EXPlain EXECULTON ...ceuiiieiieet et e et e e e e e eees 71

6. How MySQL Transforms SUDQUENTESuiueiiiiiieie e e e 73
6.1.1tem.in_subselect::select _transfornmerccooeeiiiiiiiiiinennnnennn, 73
6.1.1. Scalar | N SUDQUENYueeieceieee e e e e e e e 73

6.1.2. ROW | NSUDQUENY ...ttt 76

6.2 1temall any _SubSel ECt ..o 76
6.3.1tem si ngl er ow_Subsel €Ct ..o 77

7. MySQL Client/Server ProtOCOlieuieiiii e e e eaes 78
45 O I o= g o o1 o - 78

728 @ ' =0T [78

S T = 037 o1 79

7.4. The Packet HEAOErcocvviiieiiii e e e e e aaans 79

AT - o G A)Y 1= TP 80

7.6. Handshake Initialization Packetccooiiiiiiiiiiii e 80

7.7. Client Authentication Packetoviiiiiiiiiiiiii e 81

7.8. Password FUNCLIONScoouuiiiiii e eeens 82

7.9. Command PaCKELooiieieiiiii e 83

7.10. Types Of RESUIT PaCKELSccuuiiiiiiiiieeeii et 84

A8 O [o (= S P 84

T.12. ErOr PACKEL ... 85

7.13. Result Set Header PaCKEtvviiiiiiiiiiiiin e 86

MySQL Internals Manual

A T o I == ot A PP 87

715, EOF PACKEL ...ttt e 89

7.16. ROW DataPaCKetooeeiiiiiiiiii e e 90

7.17. Row Data Packet: Binary (Tentative DesCription)cceeuirveierinnneeeiineeennnn. 90

7.18. Prepared Statement Initialization Packet (Tentative Description)cccecevuneeee. 91

7.19. OK for Prepared Statement Initialization Packet (Tentative Description) 92

7.20. Parameter Packet (Tentative DESCription)cccuveiiieiiiieiiiieeeieeeeeeeeeae e 92

7.21. Long Data Packet (Tentative DeSCription)ovvveieieineiiiieien e eeieeeieeeenn 92

7.22. Execute Packet (Tentative DESCIiPLioN)uvvveeeiieiiiiie e 93

7.23. COMPIESSION ...ttt ettt ettt ettt e et e et et e et e e e et et e e e e na e e eenans 9

8. REPIICALION .. e 95
8. L. MaINCOUE FIIES ... 95

ST 1= = 11 0=V oo 95

LSRG 2L ol [Tor= 1 Lo I I 0] == o S 98
8.3.1. TheSlave /O THhreadcoeuiiiiiiiii e 98

8.3.2. TheSlave SQL Threadcc.uviiiiiiiiiiiei e 99

8.3.3. WhY 2 ThreadS?uieiiiiiiieiiii et 100
8.34.TheBi nl og DUnmp Threadccouiiiiiiiiiiiii e 101

8.4. How Replication DealSWith...ccoiiiiiiiiii e 102
8.4.1. aut o_i ncrenent Columns, LAST | NSERT I D() .oovvevvvvvinveennnennn. 102

8.4.2. User VariablesS (SINCEA.L) ...ceveviieiiii e 102

8.4.3. SyStEM VariablESuiiiiiiiieei e 102

8.4.4. SOME FUNCLIONS ...ttt 102

8.4.5. Non-repeatable UDF FUNCLIONScoevniiiiiiiiiieiiece e 102

8.4.6. Prepared StAEMENEScvvuiii e 102

8.4.7. Temporary TableSuviiiieii e e 102

8.4.8. LOAD DATA [LOCAL] | NFILE(SINCE4.0) .oooveeeeeeeeeeeeeeeeeeeennna, 103

8.5. How a Slave Asks Its Master to Send ItSBinary LOgvevvvviieviiiinieiiiiineeees 103

8.6. Network PacketSin Detailccouiiiuiiiiii e 104

8.7. Replication Event Format in Detailc.oiiiiiiiiiiii e, 104
8.7.1. The CommOn HEBAENoeiiiiiiieiiiii e 104

8.7.2. The “Post-headers’ (Event-specific Headers)ccovvveivviiiiviiicennnenn, 105

B8, PlaANS .. 110

9. My 1 SAMRECOIT SETUCKUIE ...ttt et e et e e e et eeeere e eees 111
1S g 1 0o (8 1o o R PP 111

9.2. Physical Attributes of COlUMNSc.oiiiiiiii e 113

9.3. Where to Look For More INfOrmationcoveveeuenieieiiinneeiiiieeecein e 117

10. The . MYT FIlE e 118
LO.1. MY SAMEILES ..o e e e e e an s 124

11. Myl SAMCompressed Data File@ LayOutc..uuieiiiiiieeiiiieeceii e 125
11.1. HUFfMaN COMPIESSIONceieiiteeei et e et e e et e e e e anaas 125

11.2. Themyi sanmpPack Programcceieeuieeiee e 125

11.3. Record and Blob Length ENCOINGuovvvnieiiieiii e 125

11.4. Code Tree REPreSENtatioNccveuiieiiieii e e e e e e aes 126

11.5. Usage of the INdeX FIlei i 126

11.6. myi SAMPACK THICKS ...t 126

11.7. Detailed Specification of the Decoding:cooeuuiiiiiiiiiiiiiiece e, 126

12.1 NNODB RECOI SIIUCIUIE ...ttt ettt e e e e 129
12.1. High-AlTUAE PICIUIEoeeeci e e e 129
12.1.1. FIELD START OFFSETS ... 129

12.1.2. EXTRA BYTES ..o 130

12.1.3. FIELD CONTENTS ..ottt a e 131

12.2. Whereto Look For More Informationcoceuieiiiiiiiiniiiiieceee e 133

13. 1 NNODB Page SITUCLUIEiviieiii et e e e e e e e e e ans 134
13,1 High-AITUAE VIEW .ceveii e e e 134

L3 L1 Fil HEBAEN ..o 134

13.1.2. Page HEAOENcvvieeeee e 135

13.1.3. The Infimum and Supremum RECOrdSccovvviieiiiiiieeiiiiineeeeiinne, 136

MySQL Internals Manual

1314, USEN RECOMS ... eeeeiie ettt e et e et e e e e e s 137
G T T o == S = o 137
13.1.6. PagE DITECLOMY ...ceevii ettt 137
L1307, Fil TrallOr oo 137

13,2 EXBMPIE .t a e 138
13.3. Whereto Look For More Informationcooeuneiiiniiiiiiiiieeeei e 139
0 =SS o = 140
14.1. Adding New Error Messagesto MYSQLvvvniviiiiiiiieei e 140
14.2. Adding Storage ENgine Error ME@SSagESccuuuiiiiiiiiiiiiiieecei e 143
15. Annotated List of Filesin the MySQL Source Code Distributionccceviviiiinnnnnn. 145
15.1. DIr€CtOrY LISHNG ..eeueeeneeeieei ettt e e e eenas 145
15.1.1. The bdb DIr€CtOry ...cuuieei e 146
15.1.2. The Bi t KEEPEr DIr€CIONYivvvuieiiiieiiiieeii e e e e e e e e e e 146
15.1.3. The BUI LD DITECLOIY ...vvvneveiieei e e ee e e e e e e e e e e e naaees 147
15.1.4. TheCl i €Nt DIFECLOMYociiiiiieeiiii e 147
15.1.5. Theconf i g DIF€CLOIYcccovuinieiiiiiie et 147
15.1.6. Thecrmd-l i ne-ut i | S DIireClOrYcceuiiiuiiiiiiiiii e 148
15.1.7. The dbug DIr€CtOrYccvuiiiiiiieie e 149
15.1.8. ThEDOCS DIFECIOIY ..uucvveniiiiieei e e et e e e e e e e e e e e e e e e e 149
15.1.9. The Xt r @ DIFECLOIY ..cvvvniviiiieei e e e e e e e 150
15.1.10. The heap DIrClOrYieiiiiiieeiiii et 150
15.1.11. Thei NCl Ude DIreCtOrYcccvuuieeiiiiiieeiei e 151
15.1.12. Thei NNODAaSe DIreClOrYcc.uiiiiiiiiiiiiiiieei e 152
15.1.13. Thel i brmysql Dir€CIOrycc.uviiiniiiiiiiiee e 152
15.1.14. Thel i brysql 1 DIir€CtOry ..oouvvevniiiiiieiie e e 152
15.1.15. Thel i brmysql d DIir€CtOry ...ccouvvevniiiiieie e 153
15.1.16. The MBN DIFECIONY ...cieiiiiieeiiii e 153
15.1.17. The myi SAMDITECIONYccceuiiieeiiiie et 153
15.1.18. The myi samT g DIr€CLOIYoceuuiiiiiiiiiiiiii e 155
15.1.19. Themysql - t @St DIreCtorycoeuviiiiiiiiiiiiiiee e 156
15.1.20. ThE MY SYS DIrECLONY ovvniiiiiiii e e e e e e e 156
15.1.21. The ndb Dir€CIOrYcoevniiiiiiiei e e e e e 161
15.1.22. Thenet War € DIFeCIONYcccuuuieiiiiiiieeiii e 161
15.1.23. The NEW RPMS DIT€CIONY ...ccvvueeiiiiieeieiie ettt 162
15.1.24. ThE OS2 DITECLONY ..cevvvviiiiieeeieeeieiiiee ettt 162
15.1.25. The pSt aCK DIFCLOrYiieuuiiiiiiiiiiieei e 162
15.1.26. Ther €geX DIr€CtONYcvvviiiieeii e ee e e e e 163
15.1.27. The SCCS DITECLOIY ..vvuuiviiieeeieeeieeee e e e e e e e e e e e e e e e e eaaees 163
15.1.28. The SCri Pt S DIFECIONY ...cciveiieeiiiiie e 163
15.1.29. Theserver -t 00l S DIreCtOrycoeovvviiieiiiiiiieeiii e 164
15.1.30. The SOl DIFECIOIYeeuniiiiieei e eae s 164
15.1.31. The sql - bench DIreCtoryccoviiiiiiiiiiiiiiiiei e 168
15.1.32. Thesql - cOmMDN DIr€CtOrYuovvviiiiiieiie e e 169
15.1.33. The SSL DiIr€CIOIY ...ucveeniiiiieiei e e e et e e e e e e e e e e eaeees 169
15.1.34. The St ri NgS DIFeCIONY ...ccoevenieeiiiii e 169
15.1.35. Thesupport -f il €S DIr€Ctorycccooiveiiimiiiiiiiiiiieeeiieeeeiiee 171
15.1.36. Thet €St S DIreCIOrYcoeuniiei e 171
15.1.37. Thet 001 S DIF€CLONYcivuiiieiiieiie e 172
15.1.38. The VCH+Fi | €S DIr€CIOY ...ccvuiiiiiiiiiiieiiie e v e e e 172
15.1.39. ThE Vi O DIFCIOIY ...ucieeeeeiieiei e e e e e e eae e 173
15.1.40. The Il i D DITECIONY ..coovunieiiiii e 174

16. Annotated List of Filesin the | nnoDB Source Code Distributioncccoooeieiinnnies 175
g0 L PP 186

Vi

Preface

This is a manua about MySQL internals. MySQL development personnel change it on an occasional
basis. We don't guarantee that it's all true or up-to-date. We do hope it will show you how MySQL's pro-
grammers work, and how MySQL's server works as a result.

Vii

Chapter 1. A Guided Tour Of The
MySQL Source Code

Hi, welcome to chapter 1. What we're about to do in this chapter is pick up the latest copy of the
MySQL source code off the Internet. Then we'll get alist of the directories and comment on why they're
there. Next we'll open up some of the files that are vital to MySQL's working, and comment on specific
linesin the source code. WE'I close off with afew pictures of file formats.

BitK eeper

We want to download the latest, the very latest, version of the MySQL server. So we won't click
“Downloads’ on the MySQL Developer Zone page --- that's usually a few weeks old. Instead we'll get
BitKeeper (tm), which is a revision control package, vaguely like CVS or Perforce. This is what
MySQL's developers use every day, so what we download with BitKeeper is usually less than a day old.
If you've ever submitted a bug report and gotten the response “thanks, we fixed the bug in the source
code repository” that means you can get the fixed version with BitKeeper.

First, log on to www.bitkeeper.com and register. Oneway is:
e Click “Downloads’ which takes you to the downloads page ht-
tp://bitkeeper.com/Products.BK _Pro.Downloads.html

* Click on “ Software download form” which takes you to ht-
tp://www.bitmover.com/cgi-bin/downl oad.cgi

* Fill in dl the fields, including the Platform name, which was “Linux/x86 ...” for us, but you'll be
okay with other choices. Like MySQL, BitKeeper is available on many platforms, so the details will
vary here.

* Click “Send Requests’.
Then you'll have to wait until BitKeeper mails you some more instructions, which are actually quite
simple. Thereis no fee to use BitKeeper for downloads of open-source code repositories like MySQL's.

After you have BitKeeper, you'll be ableto clone. That is, you'll be able to get a copy of the source code,
using a statement that looks like this:

shel | > bk cl one

.. that is,

bk cl one <MySQ. machi ne:/directory name> <your directory nane>

.. that is,

- Start a shell

- On the shell, make a directory naned (say) nysql-5.0:
mkdi r $HOVE/ nysql -5. 0
cd $HOVE

- bk clone bk://mysql.bkbits.net/nysql-5.0 nysqgl-5.0

(The $HOME directory is usually your persona area that you're allowed to write to. If that's not the

http://bitkeeper.com/Products.BK_Pro.Downloads.html
http://bitkeeper.com/Products.BK_Pro.Downloads.html
http://www.bitmover.com/cgi-bin/download.cgi
http://www.bitmover.com/cgi-bin/download.cgi

A Guided Tour Of The MySQL Source Code

case, replace $SHOME with your personal choice whenever it appears.)

Thereisalot of code, so the first time you do this the download will take over an hour. That's if you're
lucky. Glitches can occur, for example the 'bk' command fails due to afirewall restriction.

If you're glitch-prone, you'll need to read the manual: Section 2.8.3, Installing from the Development
Source Tree.

On later occasions, you'll be doing what's called a“bk pull” instead of a“bk clone”, and it will go faster.
Typically a“bk pull” takes 10 minutes and is glitch-free.

Directories, Alphabetical Order

After bk clone finishes and says “ Clone completed successfully” you'll have 40 new sets of files on your
computer, asyou'll be ableto seewith| s or di r.

BUI LD

Bi t Keeper
Docs

NEW RPVS
SCCS

SSL
VC++Fi | es
bdb

client
cnd-line-utils
config
dbug

extra

heap

i ncl ude

i nnobase
I'i bysql

i brmysqgl _r
i bmysqgld
man

nmyi sam

nyi samr g
nmysqgl -t est
nysys

ndb

net war e
0s2

pst ack
regex
scripts
server-tools
sql
sgl - bench
sgl - conmon
strings
support-files
tests

t ool s

Vi o

zlib

These will al be installed as directories below the SHOME directory. At first all these directory names
might intimidate you, and that's natural. After all, MySQL is a big project. But we're here to show you
that there's order in this apparent chaos.

A Guided Tour Of The MySQL Source Code

TheMajor Directories

#1 BU LD
#2 client
#3 Docs
#4 nyi sam
#5 nysys
#6 sql

#7 vio

The orderly approach isto look first at the most important directories, then we'll look at the whole list in
our second pass. So, first, let's look at what you'll find in just seven of the directories: BUILD, client,
Docs, myisam, mysys, sql, and vio.

TheMajor Directories: #1 BUILD

The first major directory we'll look at is BUILD. It actualy has very little in it, but it's useful, because
one of the first things you might want to do with the source code is: compile and link it.

The example command line that we could useis

BUI LDY conpi | e- penti um debug - - prefi x=$HOVE/ nysql - bi n

It invokes a batch file in the BUILD directory. When it's done, you'll have an executable MySQL server
and client.

Or, um, well, maybe you won't. Sometimes people have trouble with this step because there's something
missing in their operating system version, or whatever. Don't wortry, it really does work, and there are
people around who might help you if you have trouble with this step. Search for "build" in the archives
of lists.mysgl.com.

We, when we're done building, tend to install it with

nmake

make install

$HOVE/ nysql - bi n/ bi n/ nysqgl _i nstal | _db\
- - basedi r =$HOVE/ nmysql - bi n\
- - dat adi r =$HOVE/ nysql - bi n/ var

This puts the new MySQL installation fileson

$HOVE/ nysql - bi n/ | i bexec -- for the server
$HOVE/ nysql - bi n/ bin -- for the nmysql client
$HOVE/ nysql - bi n/ var -- for the databases
gdb GNU debugger

Once you've got something that runs, you can put a debugger on it. We recommend use of the GNU de-
bugger

htt p: // www. gnu. or g/ sof t war e/ gdb/ docunent ati on/

And many developers use the graphical debugger tool DDD - Data Display Debugger

htt p: // wwv. gnu. or g/ sof t war e/ ddd/ manual /

http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/ddd/manual/

A Guided Tour Of The MySQL Source Code

These are free and common, they're probably on your Linux system already.

There are debuggers for Windows and other operating systems, of course --- don't feel left out just be-
cause were mentioning a Linux tool name! But it happens that we do a lot of things with Linux
ourselves, so we happen to know what to say. To debug the mysqld server, say:

ddd --gdb --args \

$HOVE/ mysql - bi n/ 1 i bexec/ nmysqgl d \
- - basedi r =$HOVE/ nysqgl - bi n \
- - dat adi r =$HOVE/ nysql - bi n/ var\
- - ski p- net wor ki ng

From this point on, it may be tempting to follow along through the rest of the "guided tour" by setting
breakpoints, displaying the contents of variables, and watching what happens after starting a client from
another shell. That would be more fun. But it would require a detour, to discuss how to use the debug-
ger. So we'll plow forward, the dull way, noting what's in the directories and using a text editor to note
what'sin the individual files.

Running a test with the debugger

Torun atest named sore. t est with the debugger in embedded mode you could do this:

1. Runlibnysqgl d/ exanpl es/test_run --gdb sone.test.Thiscreatesal i brmysql d/
exanpl es/ t est - gdbi ni t filewhich contains the required parametersfor nysql t est .

2. Make a copy of thet est-gdbinit file (cal it, for example, sone- gdbi nit). Thet est -
gdbi ni t filewill beremoved aftert est - run - - gdb hasfinished.

3. Load | i bnysqgl d/ exanpl es/ nysql t est _enbedded into your favorite debugger, for ex-
ample: gdb nysql t est _enbedded.

4. Inthedebugger, for examplein gdb, do: - - sou somne- gdbi ni t

Now some. t est isrunning, and you can seeif it's passing or not.

If you just want to debug some queries with the embedded server (not the test), it's easier to just run
i brysqgl d/ exanpl es/ mysql . It's the embedded server-based clone of the usual mysql tool, and
works fine under gdb or whatever your favorite debugger is.

TheMajor Directories: #2 client
The next major directory is mysqgl-5.0/client.

si ze nane comrent

100034 nysql . cc "The MySQ. command t ool "

36913 nysql adm n. ¢ mai nt enance of MYSQL dat abases
22829 nysqgl show. ¢ show dat abases, tables, or colunmms
+ 12 nore .c and .cc prograns

It has the source code of many of your familiar favorites, like mysqgl, which everybody has used to con-
nect to the MySQL server at one time or ancther. There are other utilities too --- in fact, you'll find the
source of most client-side programs here. There are also programs for checking the password, and for
testing that basic functions --- such as threading or accessvia SSL --- are possible.

You'll notice, by the way, that we're concentrating on the files that have extension of ".c" or ".cc". By

A Guided Tour Of The MySQL Source Code

now it's obviousthat C is our principal language athough there are some utilities written in Perl aswell.
The Major Directories. #3 Docs

The next mgjor directory is mysql-5.0/Docs.

With the BitKeeper downloads, /Docs is nearly empty. The important files are only present if you do a
regular source-file download, or if you do a separate 'bk clone' for 'mysgldoc’ instead of 'mysql-5.0" (in

which case this major directory is mysgldoc/Docs instead of mysgl-5.0/Docs). Let's just pretend that
either of those scenarios applies, so there are some important files here:

size name conment

396147 .../sanple-data/world/ world.sql script to make 'world' database
589670 .../internals/internals.xm i nt ernal s manual

5MB ... /refman/ *. xm ref erence manual

+ several more .xm and .texi prograns

The documentation files with the extension .texi are written for an open-source text-formatting package,
Texinfo. The documentation is here: http://www.gnu.org/software/texinfo/manual/texinfo/. However,
you might want to skip becoming an expert, because MySQL has switched to using DocBook for most
purposes. So pay attention to the files with a .xml extension instead. The DocBook format is becoming
popular among publishers, and of course there's lots of general documentation for it, for example at ht-
tp://www.docbook.org/. MySQL's documentation team uses some particular extensions, so you'll find
that the .xml files don't exactly look like every other DocBook file in the world, but it's working well
enough since we switched in the spring of 2005. The other formats that you see -- .chm, .html, etc. -- are
derived from the .xml files with "make" scripts that you'll also find in the mysgldoc/tools directory. Per-
haps the most interesting derived file, for our immediate purpose, s
.../mysgldoc/internal s/internal s.html, because it's probably the source of the file that you're reading now.
As confirmation, you can open internals.ntml and click to the see the table of contents.

Contents of internals.xm/htm (abbreviated titles):

A CGui ded Tour of the MySQ. Source Code
Codi ng Gui del i nes

The Optimi zer

| mportant Al gorithns and Structures

How MySQL Perforns Different Selects

How MySQL Transforns Subqueri es

MySQ. Cdient/Server Protocol

Replication

Myl SAM Record Structure

The ".WI" file

I nnoDB Record Structure

I nnoDB Page Structure

Addi ng New Error Messages to MySQ

Annot ated List of MySQ. Source Code Files
Annot ated List of InnoDB Source Code Files

At this moment, internals.xml has over 100 pages of information, including some details about the
formats of MySQL files that you won't find anywhere else, and a complete description of the message
formats that the client and server use to communicate. Although it's rough and may contain errorsand is
obsolete in parts, it is adocument that you must read to truly understand the workings of MySQL.

TheMajor Directories: #4 myisam

The next major directory is labelled myisam. We will begin by mentioning that myisam is one of what
we call the MySQL storage engine directories.

http://www.gnu.org/software/texinfo/manual/texinfo/
http://www.docbook.org/
http://www.docbook.org/

A Guided Tour Of The MySQL Source Code

The MySQ. storage engine directories:

heap al so known as ' nenory’

i nnodb -- maintained by Innobase Oy
nyi sam -- see next section!

ndb -- ndb cluster

For example the heap directory contains the source files for the heap storage engine and the ndb direct-
ory contains the source files for the ndb storage engine.

But the files in those directories are mostly analogues of what's in the myisam directory, and the myisam
directory is sort of a'template'.

On the myisam directory, you'll find the programs that do file I/0. Notice that the file names begin with
the letters mi, by the way. That stands for MylSAM, and most of the important files in this directory
start with mi.

File handling programs on mysqgl-5.0/myisam:

si ze name coment
40301 ni _open.c for opening
3593 ni _close.c for closing
1951 m _renane. c for renam ng

+ nore nmi_*.c prograns

Row handling programs on mysql-5.0/myisam:

size name conment

29064 m _delete.c for deleting
2562 m delete all.c for deleting all
6797 m _update.c for updating

32613 m _wite.c for inserting

+ nore mi_*.c prograns

Drilling down abit, you'll also find programs in the myisam directory that handle deleting, updating, and
inserting of rows. The only one that's a little hard to find is the program for inserting rows, which we've
called mi_write.c instead of mi_insert.c.

Key handling programs on mysqgl-5.0/myisam:

si ze nanme conment
4668 m _rkey.c for random key searches
3646 mi _rnext.c for next-key searches
15440 m _key.c for managi ng keys

+ nore nmi_*.c prograns

The final notable group of filesin the myisam directory is the group that handles keysin indexes.

To sum up: (1) The myisam directory is where you'll find programs for handling files, rows, and keys.
Y ou won't find programs for handling columns --- we'll get to them a bit later. (2) The myisam directory
isjust one of the handler directories. The programs in the other storage engine directories fulfill about
the same functions.

TheMajor Directories. #5 mysys

The next major directory is labelled mysys, which stands for MySQL System Library. This is the tool-

6

A Guided Tour Of The MySQL Source Code

box directory, for example it has low level routines for file access. The .c filesin mysys have procedures
and functions that are handy for calling by main programs, for example by the programs in the myisam
directory. There are 115 .c filesin mysys, so we only can note a sampling.

Sampling of programs on mysgl-5.0/mysys

size name conment
17684 charset.c character sets
6165 nf_qgsort.c qui cksort

5609 nf_tenpfile.c tenporary files
+ 112 nore *.c prograns

Example one: with charset.c routines, you can change the character set.
Example two: mf_gsort.c contains our quicksort package.

Example three: mf_tempfile.c has what's needed for maintaining MySQL's temporary files.

Y ou can see from these examples that mysys is a hodgepodge. That's why we went to the trouble of pro-
ducing extra documentation to help you analyze mysys's contents, in the internals.xml document that we
mentioned earlier.

TheMajor Directories: #6 sql

The next major directory is mysgl-5.0/sgl. If you remember your manual, you know that you must pro-
nounce this: ess queue ell.

The "parser" programs on mysqgl-5.0/sql:

size name conment

51326 sql | ex.cc | exer
230026 sgl _yacc.yy par ser
+ many nore *.cc prograns

This is where we keep the parser. In other words, programs like sql_lex.cc and sgl_yacc.yy are respons-
ible for figuring out what'sin an SQL command, and deciding what to do about it.

The "handler" programs on mysqgl-5.0/sql:

si ze nane conment

79798 ha_berkel ey. cc bdb
56687 ha _federated.cc federated (sql/ned)

61033 ha_heap. cc heap (nenory)
214046 ha_i nnodb. cc i nnodb
47361 ha_nyi sam cc nyi sam

14727 ha_nyi samrg.cc nerge
215091 ha_ndbcl uster.cc ndb

Thisis also where we keep the handler programs. Now, you'll recall that the storage engine itself, for ex-
ample myisam, is a separate directory. But here in the sgl directory, we have programs which are re-
sponsible for determining which handler to call, formatting appropriate arguments, and checking results.
In other words, the programs that begin with the letters ha are the handler interface programs, and there's
one for each storage engine.

The "statement” routines in mysql-5.0/sql:

A Guided Tour Of The MySQL Source Code

si ze nane conment
24212 sql _delete.cc 'delete ..."' statenent
1217 sql _do. cc ‘do ...'
22362 sql _hel p.cc "help ..."'

75331 sql __insert.cc 'insert
430486 sql select.cc 'select
130861 sqgl _show. cc "show . ..

42346 sgl _update.cc ‘'update ..
+ many nore sql _*.cc prograns

Also in the sgl directory, you'll find individual programs for handling each of the syntactical compon-
ents of an SQL statement. These programs tend to have names beginning with sgl_. So for the SELECT
statement, check out sgl_select.cc.

Thus, there are "statement” routines like sql_delete.c, sgl_load.c, and sgl_help.c, which take care of the
DELETE, LOAD DATA, and HELP statements. The file names are hints about the SQL statements in-
volved.

The "statement function™ routines in mysgl-5.0/sql:
si ze nane conment

19906 sql _string.cc strings

6152 sql ol ap. cc olap (rollup)

14241 sql _udf. cc user-defined functions
17669 sql _union.cc uni ons

Then there are the routines for components of statements, such as strings, or online analytical processing
which at this moment just means ROLLUP, or user-defined functions, or the UNION operator.
TheMajor Directories: #7 vio

The final major directory that we'll highlight today islabelled vio, for "virtua 1/0".

The vio routines are wrappers for the various network 1/0 calls that happen with different protocols. The
idea is that in the main modules one won't have to write separate bits of code for each protocol. Thus

Vio's purpose is somewhat like the purpose of Microsoft's winsock library.

And the preceding paragraph about vio is actually a quotation from alater section of this internals docu-
mentation file, internals.xml.

(Wedidn' lift the quotation because of laziness, but to indicate the sort of information that's in the docu-
mentation.)

Okay, that wraps up our quick look at the seven major directories. Just one summary chart remains to
do.

The Flow

Thisisadiagram of the flow.

User enters "I NSERT" statenment [* client */

|

Message goes over TCP/IP line /* vio, various */
|

Server parses statenent /* sqgl */

A Guided Tour Of The MySQL Source Code

Server calls lowlevel functions [* nyisam */

|
|
Handl er stores in file /* nysys */

The diagram is very simplified --- it's a caricature that distorts important things, but remember that we've
only discussed seven major directories so far: Docs, BUILD, and the five that you see here.
The flow works like this:

First, the client routines get an SQL statement from a user, allowing edit, performing initial checks, and
SO on.

Then, viathe vio routines, the somewhat-massaged statement goes off to the server.

Next, the sgl routines handle the parsing and call what's necessary for each individual part of the state-
ment. Along the way, the sgl routines will be calling the low level mysys routines frequently.

Finally, one of the ha (handler) programs in the sgl directory will dispatch to an appropriate handler for
storage. In this case we've assumed, as before, that the handler is myisam --- so a myisam-directory pro-
gramisinvolved. Specifically, that program is mi_write.c, as we mentioned earlier.

Simple, en?

The Open-sour ce Directories

We're now getting into the directories which aren't "major”. Starting with:

dbug

pst ack

regex

strings
zlib

Now it's time to reveal a startling fact, which is --- we didn't write all of the source code in all of the
source code directories all by ourselves. Thislistis, in asense, atribute to the idea of open source.
There's dbug, which is Fred Fish's debug library.

There's pstack, which displays the process stack.

There'sregex, which iswhat we use for our regular expressions function.

There's strings, the meaning of which is obvious.

There's zlib, which isfor Zempel-Liv compression.

All of the programs in these directories were supplied by others, as open source code. We didn't just take
them, of course. MySQL has checked and changed what's in these directories. But we acknowledge with
thanks that they're the products of other projects, and other people's labor, and we only regret that we
won't have time to note al the contributed or publicly available components of MySQL, in this manual.
Thelnternal and External Storage Engine Directories

Continuing with our extract from the directory list ...

bdb /* external */

9

A Guided Tour Of The MySQL Source Code

heap

i nnobase /* external */
nyi sam

nyi samr g

ndb

Let's go through the idea of storage engines once more, this time with a list of al the storage engines,
both the ones that we produce, and the ones that others produce. We've already mentioned the internal
ones --- so now we'll remark on the directories of the two common external storage engines --- BDB and
innobase.

The BDB, or Berkeley Database, handler, is strictly the product of Sleepycat software. Sleepycat has a
web page at sleepycat.com, which contains, among other things, documentation for their product. So
you can download Sleepycat's own documentation of the source code in the BDB directory.

As for the innobase handler, which many of you probably use, you'll be happy to know that the com-
ments in the files are reasonably clear (the InnoBase Oy people are pretty strict about comments). There
are two chapters about it in internals.xml.

The" OS Specific' Directories

net war e
NEW RPNMS
0s2
VC++Fi | es

A few words are in order about the directories that contain files which relate to a particular environment
that MySQL canrunin.

The netware directory contains a set of files for interfacing with netware, and anyone who has an in-
volvement with NetWare knows that we're allied with them, and so thisis one of the directories that rep-
resents the joint enterprise.

The NEW-RPM S directory (empty at time of writing) isfor Linux, and the 0s2 directory isfor OS/2.

Finally, the VC++Files directory is for Windows. We've found that the majority of Windows program-
mers who download and build MySQL from source use Microsoft Visua C. In the VC++Files directory
you will find a nearly complete replication of what'sin all the other directories that we've discussed, ex-
cept that the .c files are modified to account for the quirks of Microsoft tools.

Without endorsing by particular names, we should note that other compilers from other manufacturers
also work.

Oddsand Ends

Finally, for the sake of completeness, we'll put up alist of the rest of the directories --- those that we
haven't had occasion to mention till now.

Source Code Administration Directories:
Bi t Keeper
SCCS

Commpon . h Files:
i ncl ude

G\U Readline library and rel at ed:
crmd-1ine-utils

Stand-alone Uility & Test Prograns:

10

A Guided Tour Of The MySQL Source Code

extra

nysql - t est
repl-tests
support-files
tests

t ool s

Y ou don't have to worry about the administration directories since they're not part of what you build.

Y ou probably won't have to worry about the stand-alone programs either, since you just use them, you
don't need to remake them.

There's an include directory that you SHOULD have alook at, because the common header files for pro-
grams from severa directories are in here.

Finally, there are stand-alone utility and test programs. Strictly speaking they're not part of the "source
code". But it's probably reassuring to know that there's a test suite, for instance. Part of the quality-as-
surance process isto run the scriptsin the test suite before releasing.

And those are the last. We've now traipsed through every significant directory created during your
download of the MySQL source package.

A Chunk of Codein /sgl/sgl_update.cc

Now, having finished with our bird's eye view of the source code from the air, let's take the perspective
of the worms on the ground. (Which is another name for MySQL's devel oper staff --- turn on laugh track
here))

int nmysql _update(THD *thd, ...)

{

if ((lock tables(thd, table list)))
DBUG RETURN(1); ...

in
wh
{

it read_record(& nfo,thd,table,select,0,1); .
ile (!(error=info. read record(&| nfo)) &8 1t hd- >k|IIed)

if“(!(error:tabl e->fil e->update_row (byte*) table->record[1]),
(byte*) table->record[0])))
updat ed++;
i'1"'(tabl e->triggers)

tabl e->triggers->process_triggers(thd, TRG EVENT_UPDATE, TRG ACTI ON _AFTER)
}
i'f'(updated &% (error <= 0 || !transactional _table))

nysqgl _bin_log.wite(&qinfo) && transactional _table);

Here's a snippet of code from a .c file in the sgl directory, specificaly from sgl_update.cc, which --- as
we mentioned earlier -- isinvoked when there's an UPDATE statement to process.

The entire routine has many error checks with handlers for improbable solutions, and showing multiple
screens would be tedious, so we've truncated the code a lot. Where you see an ellipsis (three dots in a
row), that means "and so on".

11

A Guided Tour Of The MySQL Source Code

So, what do we learn from this snippet of code? In the first place, we see that it's fairly conventional C
code. A brace causes an indentation, instructions tend to be compact with few unnecessary spaces, and
comments are sparse.

Abbreviations are common, for example thd stands for thread, you just have to get used to them. Typic-
ally astructure will be in a separate .h file.

Routine names are sometimes long enough that they explain themselves. For example, you can probably
guess that this routine is opening and locking, allocating memory in a cache, initializing a process for
reading records, reading records in aloop until the thread is killed or there are no more to read, storing a
modified record for the table, and --- after the loop is through --- possibly writing to the log. Incident-
ally, atransactiona tableis usualy aBDB or an InnoDB table.

Obviously we've picked out what's easy to follow, and we're not pretending it's all smooth sailing. But
thisis actual code and you can check it out yourself.

The Skeleton Of The Server Code
And now we're going to walk through something harder, namely the server.

WARNING WARNING WARNING: code changes constantly, so names and parameters may have
changed by the time you read this.

Important programs we'll be walking through:

/'sql / nysql d. cc

/sql /sql _parse.cc
/'sql /sql _prepare.cc
/'sql/sqgl _Insert.cc
/sql / ha_nyi sam cc
/myisamim _write.c

Thisis not as simple as what we've just done. In fact we'll need multiple pages to walk through this one,
and that's despite our use of truncation and condensation again. But the server is important, and if you
can grasp what we're doing with it, you'll have grasped the essence of what the MySQL source code is
all about.

WEe'l mostly be looking at programs in the sqgl directory, which is where mysgld and most of the pro-
grams for the SQL engine code are stored.

Our objective isto follow the server from the time it starts up, through a single INSERT statement that it
receives from aclient, to the point where it finally performsthe low level write in the MylSAM file.

Walking Through The Server Code: /sgl/mysgld.cc
int main(int argc, char **argv)

_cust _check_startup();

(void) thr_setconcurrency(concurrency);

init_ssl();

server_init(); /1l "bind" + 'listen
i nit_server_conmponents();

start_signal _handler();

acl _init((THD *)0, opt_noacl);

init_slave();

create_shutdown_thread();

create_nai ntenance_t hread();

handl e_connecti ons_socket s(0); /1!
DBUG PRINT("quit",("Exiting main thread"));
exit(0);

12

A Guided Tour Of The MySQL Source Code

Hereiswhereit all starts, in the main function of mysgld.cc.

Notice that we show a directory name and program name just above this snippet. We will do the same
for al the snippetsin this series.

By glancing at this snippet for afew seconds, you will probably see that the main function is doing some
initial checks on dtartup, is initializing some components, is caling a function named
handle_connections_sockets, and then is exiting. It's possible that acl stands for "access control” and it's
interesting that DBUG_PRINT is something from Fred Fish's debug library, which we've mentioned be-
fore. But we must not digress.

In fact there are 150 code lines in the main function, and we're only showing 13 code lines. That will
give you an idea of how much we are shaving and pruning. We threw away the error checks, the side
paths, the optional code, and the variables. But we did not change what was left. Y ou will be able to find
these linesif you take an editor to the mysqgld.cc program, and the same applies for all the other routines
in the snippetsin this series.

The one thing you won't see in the actual source code is the little marker "// I". This marker will always
be on the line of the function that will be the subject of the next snippet. In this case, it means that the
next snippet will show the handle_connection_sockets function. To prove that, let's go to the next snip-
pet.

Walking Through The Server Code: /sgl/mysgld.cc
handl e_connecti ons_sockets (arg __attribute_ ((unused))

if (ip_sock !'= I NVALI D_SOCKET)

{
FD_SET(i p_sock, &cl i ent FDs) ;
DBUG PRI NT("general ", ("Waiting for connections."));
whil e (!abort_I oop)
{

new sock = accept(sock, my_reinterpret_cast(struct sockaddr*)

(&cAddr),
&l engt h);
t hd= new THD;
if (sock == unix_sock)
t hd- >host =(char*) | ocal host;
create_new t hread(thd); /1]

}

Inside handle_connections_sockets you'll see the hallmarks of a classic client/server architecture. In a
classic client/server, the server has a main thread which is always listening for incoming requests from
new clients. Once it receives such arequest, it assigns resources which will be exclusive to that client. In
particular, the main thread will spawn a new thread just to handle the connection. Then the main server
will loop and listen for new connections --- but we will leave it and follow the new thread.

As well as the sockets code that we chose to display here, there are severa variants of this thread loop,
because clients can choose to connect in other ways, for example with named pipes or with shared
memory. But the important item to note from this section is that the server is spawning new threads.

Walking Through The Server Code: /sgl/mysgld.cc
create_new t hread(THD *t hd)

pt hr ead_mnut ex_| ock(&.OCK t hread_count);
pt hr ead_creat e(& hd->real _i d, &onnection_attrib,

13

A Guided Tour Of The MySQL Source Code

handl e_one_connecti on, /1!
(void*) thd));
pt hr ead_mut ex_unl ock(& OCK t hr ead_count);
}

Here is a close look at the routine that spawns the new thread. The noticeable detail is that, as you can
see, it uses a mutex or mutual exclusion object. MySQL has a great variety of mutexes that it uses to
keep actions of all the threads from conflicting with each other.

Walking Through The Server Code: /sgl/sgl_parse.cc

handl e_one_connecti on(THD *t hd)

{
init_sqgl _alloc(& hd->nmemroot, MEM ROOT_BLOCK SIZE, MEM ROOT_PREALLCC);
while (!'net->error & net->vio != 0 & !'thd->kill ed)
{
if (do_conmmand(t hd)) /1]

br eak;
cl ose_connecti on(net);

end_t hread(thd, 1);
packet =(char*) net->read_pos;

With this snippet, we've wandered out of mysgld.cc. Now, we're in the sgl_parse program, still in the sqf
directory. Thisis where the session'sbig loop is.

The loop repestedly gets and does commands. When it ends, the connection closes. At that point, the
thread will end and the resources for it will be deall ocated.

But we're more interested in what happens inside the loop, when we call the do_command function.

G aphi c:
client <===== MESSAGE ====> server
<======PACKETS ====>
Exanpl e:

| NSERT | NTO Tabl el VALUES (1);

To put it graphically, at this point there is a long-lasting connection between the client and one server
thread. Message packets will go back and forth between them through this connection. For today's tour,
let's assume that the client passes the INSERT statement shown on the Graphic, for the server to process.

Walking Through The Server Code: /sgl/sgl_parse.cc
bool do_conmand(THD *t hd)

net new_ transacti on(net);

packet | ength=ny_net read(net);

packet =(char*) net->read_pos;

conmmand = (enum enum server_conmand) (uchar) packet[O0];

di spat ch_comuand(comand, t hd, packet+1, (uint) packet_Iength);
/!

/
}

You've probably noticed by now that whenever we call a lower-level routine, we pass an argument
named thd, which is an abbreviation for the word thread (we think). This is the essential context which
we must never lose.

14

A Guided Tour Of The MySQL Source Code

The my_net_read function is in another program called net_serv.cc. It gets a packet from the client, un-
compressesiit, and strips the header.

Once that's done, we've got a multi-byte variable named packet which contains what the client has sent.
Thefirst byte isimportant because it contains a code identifying the type of message.

WEe'll passthat and the rest of the packet on to the dispatch_command function.
Walking Through The Server Code: /sgl/sgl_parse.cc

bool di spatch_command(enum enum server_comand comuand, THD *t hd,
char* packet, uint packet_|ength)

switch (command) ({
case COM | NI T _DB:
case COM REGQ STER SLAVE:
case COM TABLE_ DUWP:
case COM CHANGE USER:
case COM EXECUTE:
mysql _stnt execute(thd packet)
case COM LONG DATA:
case COM PREPARE:
nysqgl _stnt_prepare(thd, packet, packet |ength); /1]
/* and so on for 18 other cases */
defaul t:
send_error(thd, ER_UNKNOAN_COM ERROR);
br eak;

}

And here's just part of a very large switch statement in sgl_parse.cc. The snippet doesn't have room to
show the rest, but you'll see when you look at the dispatch_command function that there are more case
statements after the ones that you see here.

There will be --- we're going into list mode now and just reciting the rest of the items in the switch state-
ment --- code for prepare, close statement, query, quit, create database, drop database, dump binary log,
refresh, statistics, get process info, kill process, sleep, connect, and several minor commands. Thisisthe
big junction.

We have cut out the code for all of the cases except for two, COM_EXECUTE and COM_PREPARE.
Walking Through The Server Code: /sgl/sqgl_prepare.cc

We are not going to follow what happens with COM_PREPARE. Instead, we are going to follow the
code after COM_EXECUTE. But we'll have to digress from our main line for a moment and explain
what the prepare does.

"Prepare:

Parse the query

Al locate a new statenent, keep it in 'thd->prepared statements' pool
Return to client the total nunber of paraneters and result-set
netadata i nformation (if any)"

The prepare is the step that must happen before execute happens. It consists of checking for syntax er-
rors, looking up any tables and columns referenced in the statement, and setting up tables for the execute
to use. Once a prepare is done, an execute can be done multiple times without having to go through the
syntax checking and table lookups again.

Since we're not going to walk through the COM_PREPARE code, we decided not to show its code at
this point. Instead, we have cut and pasted some code comments that describe prepare. All we're illus-

15

A Guided Tour Of The MySQL Source Code

trating here is that there are commentsin the code, so you will have aid when you look harder at the pre-
pare code.

Walking Through The Server Code: /sqgl/sgl_parse.cc

bool di spatch_comrand(enum enum server _command command, THD *t hd,
char* packet, uint packet_|ength)

switch (command) ({
case COM_ I NI T_DB:
case COM REG STER SLAVE:
case COM TABLE_DUWP:
case COM CHANGE_USER:
case COM EXECUTE:
mysql _stnt execute(thd packet) /1!
case COM_ LO\IG DATA:
case COM PREPARE:
nysqgl _stnt_prepare(thd, packet, packet_I|ength);
/* and so on for 18 other cases */
defaul t:
gendEer ror(thd, ER _UNKNOMWN_COM ERROR);
reak;

}

Let's return to the grand central junction again in sgl_parse.cc for a moment. The thing to note on this
snippet is that the line which we're really going to follow is what happens for COM_EXECUTE.

Walking Through The Server Code: /sgl/sgl_prepare.cc
void nysql _stnt_execute(THD *thd, char *packet)
if (!(stnt=find _prepared statenment(thd, stnt_id, "execute")))

send_error(thd);
DBUG VO D_ RETURN;

init_stn _execute(stnt);
nysqgl _execut e_comrand(t hd); /1!

In this case, the line that we're following is the line that executes a statement.

Notice how we keep carrying the THD thread and the packet along with us, and notice that we expect to
find a prepared statement waiting for us, since thisis the execute phase. Notice as well that we continue
to sprinkle error-related functions that begin with the letters DBUG, for use by the debug library. Fi-
nally, notice that the identifier "stmt" is the same name that ODBC uses for the equivalent object. Wetry
to use standard names when they fit.

Walking Through The Server Code: /sgl/sgl_parse.cc

voi d nysql _execut e_conmand(THD *t hd)
switch (lex->sql _command) {
case SQLCOM SELECT. ...
case SQLCOM SHOW ERRORS:
case SQLCOM CREATE_TABLE:
case SQLCOM UPDATE: ...
case SQLCOM | NSERT: ... /1!
case SQLCOM DELETE: ...
case SQLCOM DROP_TABLE:

}

16

A Guided Tour Of The MySQL Source Code

In the mysgl_execute_command function. we encounter another junction. One of the items in the switch
statement is named SQLCOM _INSERT.

Walking Through The Server Code: /sgl/sgl_parse.cc

case SQLCOM | NSERT:
{
ny_bool update=(lex->value list.elements ? UPDATE ACL : 0);
ul ong privil ege= (lex->duplicates == DUP_REPLACE ?
| NSERT_ACL | DELETE ACL : INSERT_ACL | update);
if (check access(thd, privilege,tabl es->db, & abl es->grant. privil ege))

goto error;
if (grant_option &% check_grant(thd, privil ege,tables))
goto error;
if (select_lex->itemlist.elements != |lex->value_list.elenents)

send_error(thd, ER WRONG_VALUE_CQOUNT) ;
DBUG VO D RETURN,;

res = nmysql _insert(thd,tables,lex->field |ist,|ex->many val ues,
select _lex->itemlist, |ex->value_ list,
(updat e ? DUP_UPDATE : | ex->duplicates));

/1!
if (thd->net.report_error)
res= -1;
br eak;
}

For this snippet, we've blown up the code around the SQLCOM _INSERT case in the
mysqgl_execute_command function. The first thing to do is check whether the user has the appropriate
privileges for doing an INSERT into the table, and this is the place where the server checks for that, by
calling the check_access and check_grant functions. It would be tempting to follow those functions, but
those are side paths. Instead, we'll follow the path where the work is going on.

Walking Through The Server Code: Navigation Aid

Some program names in the /sgl directory:

Program Nane SQ. statement type
sql _del ete. cc DELETE

sqgl _do. cc DO

sqgl _handl er. cc HANDLER

sqgl _hel p. cc HELP

sqgl __insert.cc | NSERT /1]
sqgl _l oad. cc LOAD

sqgl _renane. cc RENANME

sqgl _sel ect. cc SELECT

sqgl _show. cc SHOW

sqgl _update. cc UPDATE

Question: Where will mysgl_insert() be?

The line that we're following will take us next to a routine named mysgl_insert. Sometimes it's difficult
to guess what program a routine will be in, because MySQL has no consistent haming convention.
However, here is one aid to navigation that works for some statement types. In the sgl directory, the
names of some programs correspond to statement types. This happens to be the case for INSERT, for in-
stance. So the mysqgl_insert program will be in the program sgl_insert.cc. But there's no reliable rule.

17

A Guided Tour Of The MySQL Source Code

(Let's add here a few sentences about the tags 'ctags program. When an editor supports ctags (and the
list is long, but vi and emacs of course are there), the function definition is one key press away - no
guessing involved. In the above case, a vim user could press] on mysgl_insert name and vim would
open sgl_insert.cc and position the curson on the first line of the mysgl_insert() function. The tags help
can be indispensable in everyday work.)

Walking Through The Server Code: /sql/sql_insert.cc

int nmysql _insert(THD *thd, TABLE LIST *table |list, List<ltenr &fields,
List<List_itenr & alues_|ist,enumduplicates duplic)

table = open_| tabl e(thd, table_list,|ock_type);

if (check_insert fields(thd,table,fields,*values, 1) ||
setup_tables(table_list) |
setup _fields(thd,table_list,*val ues,0,0,0))
got o abort;
fill _record(table->field,*val ues);
error=wite_record(table, & nfo); I

query_cache_inval i date3(thd, table_list, 1);
if (transactional _table)

error=ha_aut ocommit_or _roll back(thd, error);
query_cache_invalidate3(thd, table |i st 1);
][rysql unl ock_t abl es(t hd, t hd- >I ock);

For the mysgl_insert routine, we're just going to read what's in the snippet. What we're trying to do here
is highlight the fact that the function names and variable names are nearly English.

Okay, we start by opening atable. Then, if a check of the fields in the INSERT fails, or if an attempt to
set up the tablesfails, or if an attempt to set up the fields fails, we'll abort.

Next, we'll fill the record buffer with values. Then we'll write the record. Then welll invalidate the query
cache. Remember, by the way, that MySQL stores frequently-used select statements and result sets in
memory as an optimization, but once the insert succeeds the stored sets are invalid. Finally, we'll unlock
the tables.

Walking Through The Server Code: /sgl/sqgl_insert.cc
int wite_record(TABLE *tabl e, COPY_I NFO *i nf 0)

table->file->wite_row(tabl e->record[0]; I

Y ou can see from our marker that we're going to follow the line that contains the words ‘write row'. But
thisis not an ordinary function call, so people who are just reading the code without the aid of a debug-
ger can easily miss what the next point is in the line of execution here. The fact is, ‘write_row' can take
usto one of several different places.

Walking Through The Server Code: /sgl/handler.h

/* The handler for a table type.
W Il be included in the TABLE structure */

handl er (TABLE *table_arg) :
tabl e(tabl e_arg), active_i ndex(MAX_REF_PARTS),
ref(0), ref Iength(S| zeof (ny_off _t)),
bl ock_si ze(O) records(0), del et ed(0),
dataf|lelength(0) max_data_file_length(0),
i ndex_file_length(0),
del ete_l engt h(0), auto_increment val ue(0), raid_type(0),

18

A Guided Tour Of The MySQL Source Code

key_used_on_scan(MAX_KEY),

create_time(0), check ti rre(O) update_time(0), mean_rec_l ength(0),
ft _handl er (0)

{}

virtual int wite rowbyte * buf)=0;

To see what the write_row statement is doing, we'll have to look at one of the include files. In handler.h
on the sl directory, we find that write row is associated with a handler for a table. This definition is
telling us that the address in write_row will vary --- it getsfilled in at run time. In fact, there are several
possible addresses.

There is one address for each handler. In our case, since we're using the default values, the value at this
point will be the address of write_row in the MylSAM handler program.

Walking Through The Server Code: /sgl/ha_myisam.cc

int ha nyisam:wite rowbyte * buf)
{

statistic_increment(ha_wite_count, & OCK_ st at us);

/* |f we have a tinestanp columm, update it to the current time */
if (table->tine_stanp)
updat e_ti mest anp(buf +t abl e->ti me_stanp-1);

/*

If we have an auto_increnent colum and we are witing a changed row
or a new row, then update the auto_increment value in the record.

*/

if (table->next_nunber field & buf == table->record[0])
update_auto_increnment();

return m_wite(file,buf); /1]

And that brings us to write_row in the ha_myisam.cc program. Remember we told you that these pro-
grams beginning with the letters ha are interfaces to handlers, and this one is the interface to the myisam
handler. We have at last reached the point where we're ready to call something in the handler package.

Walking Through The Server Code: /myisam/mi_write.c

int m_wite(M_INFO *info, byte *record)
{

_m _readinfo(info, F WRLCK, 1);
_m _mark_fil e_changed(info);
[* Cal cul ate and check all unique constraints */
Eor (i=0 ; i < share->state. header.uniques ; i++)

nm _check_uni que(i nf o, shar e- >uni quei nf o+i , record,
m _uni que_ hash(share >uni quei nf o+i , record)
HA OFFSET_ERROR) ;

to be continued in next snippet

Notice that at this point there is no more referencing of tables, the comments are about files and index
keys. We have reached the bottom level at last. Notice as well that we are now in a C program, not a
C++ program.

In this first half of the mi_write function, we see a call which is clearly commented. This is where
checking happens for uniqueness (not the UNIQUE constraint, but an internal matter).

19

A Guided Tour Of The MySQL Source Code

Walking Through The Server Code: /myisam/mi_write.c
continued from previ ous sni ppet

/* Wite all keys to indextree */
for (i=0 ; i < share->base.keys ; i++)

share->keyinfo[i].ck_insert(info,i, buff,
_m _make_key(info,i,buff,record,fil epos)

(*share->wite record)(info,record);
i f (share->base. auto_key)
update_auto_increment (info, record);

In this second half of the mi_write function, we see another clear comment, to the effect that this is
where the new keys are made for any indexed columns. Then we see the culmination of al that the last
20 snippets have been preparing, the moment we've al been waiting for, the writing of the record.

And, since the object of the INSERT statement is ultimately to cause a write to a record in afile, that's
that. The server has done the job.

Walking Through The Server Code: Stack Trace

main in /sql/nysqgld.cc

handl e_connections_sockets in /sqgl/nysqld.cc
create_new_ thread in /sql/nysqgld.cc

handl e_one_connection in /sqgl/sql_parse.cc
do_command in /sqgl/sql_parse.cc

di spatch_comand in /sql/sql _parse.cc

nysqgl _stnt_execute in /sqgl/sql_prepare.cc
nysqgl _execute_comrand in /sqgl/sql _parse.cc
nysqgl _insert in /sql/nysqgl _insert.cc

wite record in /sql/nysql _insert.cc

ha nyisam:wite rowin /sql/ha_nyisamcc
m _witein /nyisamm _wite.c

And now here'salook at what's above us on the stack, or at least an idea of how we got here. We started
with the main program in mysgld.cc. We proceeded through the creation of a thread for the client, the
several junction processes that determined where we're heading, the parsing and initial execution of an
SQL statement, the decision to invoke the MylSAM handler, and the writing of the row. We ended in a
low level place, where we're calling the routines that write to the file. That's about as low as we should
go today.

The server program would, of course, continue by returning several times in arow, sending a packet to
the client saying "Okay", and ending up back in the loop inside the handle_one_connection function.

We, instead, will pause for a moment in awe at the amount of code we've just flitted past. And that will
end our walk through the server code.

Graphic: A Chunk of MyISAM File
CREATE TABLE Tabl el (
columl CHAR(1),
col um2 CHAR(1),
col um3 CHAR(1));
| NSERT | NTO Tabl el VALUES ('a', 'b', 'c');

| NSERT | NTO Tabl el VALUES ('d', NULL, 'e');

20

A Guided Tour Of The MySQL Source Code

F1 61 62 63 00 F5 64 00 66 00abc..d e.

Continuing with our worm's-eye view, let's glance at the structure of arecordinaMylISAM file.

The SQL statements on this graphic show a table definition and some insert statements that we used to
populate the table.

Thefinal line on the graphic is a hexadecima dump display of the two records that we ended up with, as
taken from the MyISAM file for Tablel.

The thing to notice here is that the records are stored compactly. There is one byte at the start of each re-
cord --- F1 for the first record and F5 for the second record --- which contains a bit list.

When a bit is on, that means its corresponding field is NULL. That's why the second row, which has a
NULL in the second column, or field, has a different header byte from the first row.

Complications are possible, but a simple record really does look this simple.

NOTE TO READER: Yes, we know you don't believe worms have eyes. Leave it alone, thisisn't some
zoology class. Also, yes, we know this is unoriginal since it's from a late chapter in internals.xml.
Maybe you'll dream up a more exotic example. Ditto for the next snippet.

Graphic: A Chunk of InnoDB File

19 17 15 13 0C 06 Field Start O fsets /* First Row */
00 00 78 OD 02 BF Extra Bytes

00 00 00 00 04 21 System Col um #1

00 00 00 00 09 2A System Col um #2

80 00 00 00 2D 00 84 System Col um #3

50 50 Fieldl 'PP

50 50 Field2 'PP

50 50 Field3 'PP

If, on the other hand, you look at an InnoDB file, you'll find that it's got more complexities in the stor-
age. The details are in the later chapters of internals.xml, remember --- and you can ask for more details
when you go to Heikki Tuuri's presentation at the MySQL User conference. But here's an introductory
look.

The header here begins with offsets --- unlike MylISAM, which has no offsets. So you'd have to go
through column 1 before getting to column 2.

Then there is afixed header --- the extra bytes.

Then comes the record proper. Thefirst fields of atypical record contain information that the user won't
see, such asarow ID, atransaction ID, and a rollback pointer. This part would look different if the user
had defined a primary key during the CREATE TABLE statement.

And finally there are the column contents --- the string of Ps at the end of the snippet here. Y ou can see
that InnoDB does more administrating.

There's been a recent change for InnoDB; what you see above is from a database made before version
5.0.

Graphic: A Packet
Header

Number OF Rows
I D

21

A Guided Tour Of The MySQL Source Code

St at us

Length

Message Cont ent

Our final worm's-eye look at a physical structure will be alook at packets.

By packet, we mean: what's the format of a message that the client sends over the tcp/ip line to the serv-
er --- and what does the server send back?

Here we're not displaying a dump. If you want to see hexadecimal dumps of the contents of packets, in-
ternals.xml isfull of them. We're just going to note that a typical message will have a header, an identifi-
er, and alength, followed by the message contents.

Admittedly this isn't following a standard like ISO's RDA or IBM's DRDA, but it's documented so if
you want to go out and write your own type 4 JDBC driver, you've got what you need here. (Subject to
license restrictions, of course.) But aword of advice on that last point: it's already been done. Mark Mat-
thewswroteit originaly, it'sal in "MySQL Connector/J'.

TheLast Subheader

Okay, let's back up and restate. In this walkthrough, we've told you four main things.

One: How to get the MySQL source.

Two: What's in each directory in the source.

Three: The main sequence, as one walks through the server code.

Four: What physical structureslook like.

We worked hard to make a description of the MySQL source that is simple, without distorting. If you
were able to follow all that we've said, then that's wonderful, congratulations. If you ended up thinking

that MySQL isreally ssmple, well that's not what we wanted to convey, but we think you'll be disabused
of that notion when you have alook at the code yourself.

22

Chapter 2. Coding Guidelines

This chapter shows the guidelines that MySQL 's developers follow when writing new code. Consistent
style isimportant for us, because everyone must know what to expect. For example, after we become ac-
customed to seeing that everything inside an "if" is indented two spaces, we can glance at alisting and
understand what's nested within what. Writing non-conforming code can be bad. For example, if we
want to find where assignments are made to variable "mutex_count”, we might search for "mu-
tex_count=" with an editor -- and miss assignments that look like "mutex_count =" (with a space before
the equal sign) (which is non-conforming). Knowing our rules, you'll find it easier to read our code, and
when you you decide to contribute (which we hope you'll consider!) we'll find it easier to read your
code.

These guidelines are for C/C++ code for the MySQL server. They do not necessarily apply for other
projects such as MySQL Connector/J or MaxDB.

Indentation and Spacing
» Use spaces for space. Do not use tabs (\t). See the editor configuration tips at the end of this chapter
for instructions on configuring a vim or emacs editor to use spaces instead of tabs.

e Uselinefeed (\n) for line breaks. Do not use carriage return + line feed (\r\n); that can cause prob-
lemsfor other users and for builds. Thisruleis particularly important if you use a Windows editor.

» Tobegin indenting, add two spaces. To end indenting, subtract two spaces. For example:

code, code, code

code, code, code

» The maximum line width is 80 characters. If you are writing alonger line, try to break it at alogical
point and continue on the next line with the same indenting. Use of backslash is okay; however,
multi-line literals might cause less confusion if they are defined before the function start.

» To separate two functions, use two line breaks. To separate a list of variable declarations from ex-
ecutable statements, use two line breaks. To separate a function from a block of code, use two line
breaks. For example:

int function_1()

functionO();

int function2()

return,;

» Matching {} ' (left and right braces) should be in the same column, that is, the closing '}' should be
directly below the opening '{'. Do not put any non-space characters on the same line as a brace, not

23

Coding Guidelines

even a comment. Indent within braces. Exception 1: after swi t ch there is a different rule, see be-
low. Exception 2: if there is nothing between two braces, i.e. '{}', they should appear together. For
example:

f (code, code, code)
code, code, code;

r (code, code, code)

i
{
}
fo
{}
After swi t ch use abrace on the sameline, and do not indent the next line. For example:

switch (condition) {
code
code
code

}

You may align variable declarations like this:

Type val ue;
i nt var 2;
ul ongl ong var 3;

When assigning to a variable, put zero spaces after the target variable name, then the assignment op-
erator (‘=" '+=' etc.), then space(s). For single assignments, there should be only one space after the
equal sign. For multiple assignments, add additional spaces so that the source values line up. For ex-
ample:

al = b;

return_val ue= ny_function(argl);
int x= 27;

int new var= 18;

Align assignments from one structure to another, like this:
f 0o- >menber = bar - >nenber ;

f 00- >nane= bar - >nan®;
f oo- >nane_I| engt h= bar - >nane_I| engt h;

Put separate statements on separate lines. This applies for both variable declarations and executable
statements. For example, thisiswrong:
int x= 11; int y= 12;

z= x; y+= X;

Thisisright:
int x= 11,
int y= 12;
zZ= X;
y+= X

24

Coding Guidelines

Put spaces both before and after comparison operators (>' '=="">=' etc.), arithmetic operators ('+'
etc.), and Boolean operators ('||' etc.). Do not put spaces around '++' or *->'. Do not put space after **'
when "** introduces a pointer. Do not put spaces after '(". Put one space after *)" if it ends a condition,
but not if it ends alist of function arguments. For example:

int *var;

if (X =y + 2)
function_call ();

When a function has multiple arguments separated by commas (', '), put one space after each
comma. For example:

I n= nysql _bi n_| og. generat e_name(opt _bi n_Il ogname, "-bin", 1, buf);

Put one space after a keyword which introduces a condition, such asi f or f or or whi | e.

Afteri f or el se or whi | e, when there is only one instruction after the condition, braces are not
necessary and the instruction goes on the next line, indented.

if (sig!= MYSQL_KILL_SIGNAL && sig != 0)
uni reg_abort(1);

el se
uni reg_end();

whi | eI (*val && ny_isspace(nysqgld charset, *val))
*val ++;

In function declarations and invocations: there is no space between function name and '(‘; thereis no
space or line break between '(' and the first argument; if the arguments do not fit on one line then
align them. Examples:

Ret urn_val ue_type *C ass_nane: : net hod_name(const char *argl,
size t arg2, Type *arg3)

return_val ue= function_name(argunentl, argunent?2, |ong_argunent3,
ar gunment 4,
function_nane2(l ong_argunent5,
| ong_ar gument 6)) ;

return_val ue=
| ong_l ong function_name(l ong_| ong_argunentl1l, |ong_| ong_argunent 2,
| ong_I ong_| ong_ar gunent 3,
| ong_I| ong_ar gunent 4,
I ong_function_nanme2(long_| ong_argunent 5,
| ong_Il ong_ar gunent 6)) ;

Long_l ong_return_val ue_type *

Long_Il ong_cl ass_nane: :

| ong_I ong_net hod_nane(const char *long_|long argl, size t long |ong arg2
Long | ong type *arg3)

(You may but don't haveto split Cl ass_nane: : met hod_nane into two lines.)

25

Coding Guidelines

When arguments do not fit on one line, consider renaming them.
e Format constructors in the following way:

Item:ltem(int a_arg, int b_arg, int c_arg)
-a(a_arg), b(b_arg), c(c_arg)

But keep lines short to make them more readable;
Item:ltem(int |onger_arg, int nore_| onger_arg)
;1 onger (Il onger _arg),
nmor e_| onger (nore_| onger _ar Q)
{}

If a constructor can fit into one line;

Item:ltenm(int a_arg) :a(a_arg) {}

Naming Conventions

e For identifiers formed from multiple words, separate each component with underscore rather than
capitalization. Thus, usemy _var instead of nyVar or MyVar .

» Avoid capitalization except for class names; class names should begin with a capital |etter.
class Item

cl ass Query_arena;
cl ass Log_event;

» Avoid function names, structure elements, or variables that begin or end with*'_".

» Uselong function and variable names in English. This will make your code easier to read for al de-
vel opers.

e Structuretypesaret ypedef 'ed to an al-upper-case identifier.
» All #def i ne declarations should be in upper case.

#def i ne MY_CONSTANT 15
* Enumeration names should begin with enum _.
Commenting Code
e Comment your code when you do something that someone else may think is not “trivial”.
* When writing multi-line comments: put the '/*' and "*/* on their own lines, put the */* below the '/*",

put a line break and a two-space indent after the '/**, do not use additional asterisks on the left of the
comment.

26

Coding Guidelines

/*
This is how
a multi-line conment
shoul d | ook.

* [

[* **xxxxx%x This comment is bad. It's indented wong, it has additional
* asterisks. Don't wite this way.

* *********/

When writing single-line comments, the '/*' and */" are on the same line. For example:

/* W nust check if stack size = 0 as Solaris 2.9 can return 0 here */
For a short comment at the end of aline, you may use either /* ... */ or a/ / double dash. In C files
or in header files used by C files, avoid/ / comments.

Align short side/ / or /* ... */ comments by 48 column (start the comment in column 49).

qc*= 2; /* double the estimation */

When commenting members of a structure or a class , align comments by 48th column. If a com-
ment doesn't fit into one line, move it to a separate line. Do not create multiline comments aligned
by 48th column.

struct st_nysql stnt

{
”iWSQ__RO/\S *data_cursor; /* current row in cached result */
/* copy of nysql->affected_rows after statenment execution */
my_ul ongl ong af f ect ed_r ows;
nmy_ul ongl ong i nsert_id; /* copy of nysqgl->insert_id */
/*
mysqgl _stm _fetch() calls this function to fetch one row (it's different
for buffered, unbuffered and cursor fetch).
*/
i nt (*read_row func) (struct st _nysql _stmt *stnt,
b

Function comments are important! When commenting a function, note the IN parameters (the word
IN isimplicit).

Every function should have a description unless the function is very short and its purposeis obvious.
Use the following example as a template for function comments:

/*
Initialize SHA1Cont ext

SYNCPSI S
shal reset()
cont ext i n/out The context to reset.

27

Coding Guidelines

DESCRI PTI ON
This function will initialize the SHA1Context in preparation
for conputing a new SHA1 message di gest.

RETURN VALUE
SHA_SUCCESS ok
I = SHA SUCCESS sha Error Code.
*/

i nt shal reset (SHAL CONTEXT *cont ext)
{

Additional sections can be used: WARNING, NOTES, TODO, SEE ALSO, ERRORS, REFER-
ENCED BY.

* All comments should be in English.
* Putalinebreak between afunction comment and its description.
/*
This is a function.
Use it wisely.
*/

int nmy_function()

General Development Guidelines

* We use BitKeeper [http://www.bitkeeper.com/] for source management. Bitkeeper can be down-
loaded from http://www.bitmover.com/cgi-bin/download.cgi

* You should use the MySQL 5.0 source for al new developments. The public 5.0 development
branch can be downloaded with shel | > bk cl one
bk://mysql . bkbits.net/nysql-5.0 nysql-5.0

« If you have any questions about the MySQL source, you can post them to
<internal s@i sts. nysql . conr and we will answer them.

» Before making big design decisions, please begin by posting a summary of what you want to do,
why you want to do it, and how you plan to do it. This way we can easily provide you with feedback
and also discuss it thoroughly. Perhaps another developer can assist you.

» Try towrite codein alot of black boxes that can be reused or at least use a clean, easy to change in-
terface.

* Reuse code; There are aready many algorithms in MySQL that can be reused for list handling,
gueues, dynamic and hashed arrays, sorting, etc.

* Usetheny_* functionslikery_read()/my_wite()/nmy_mall oc() that you can findin the
mysys library, instead of the direct system calls; Thiswill make your code easier to debug and more
portable.

 Uselibstring functions (in the st ri ngs directory) instead of standard | i bc string functions

28

http://www.bitkeeper.com/
http://www.bitmover.com/cgi-bin/download.cgi

Coding Guidelines

whenever possible. For example, usebfi | | () andbzero() instead of nenset ().

Try to always write optimized code, so that you don't have to go back and rewrite it a couple of
months later. It's better to spend 3 times as much time designing and writing an optimal function
than having to do it all over again later on.

Avoid CPU wasteful code, even when its useistrivial, to avoid developing sloppy coding habits.

If you can do something in fewer lines, please do so (as long as the code will not be slower or much
harder to read).

Do not check the same pointer for NULL more than once.

Never use a macro when an (inline) function would work as well.

Do not make a function inline if you don't have a very good reason for it. In many cases, the extra
code that is generated is more likely to slow down the resulting code than give a speed increase be-
cause the bigger code will cause more data fetches and instruction misses in the processor cache.

It is okay to use inline functions are which satisfy most of the following requirements:

e Thefunctionisvery short (just afew lines).

* Thefunctionis used in aspeed critical place and is executed over and over again.

e The function is handling the normal case, not some extra functionallity that most users will not
use.

e Thefunction is rarely called. (This restriction must be followed unless the function trandates to
fewer than 16 assembler instructions.)

e The compiler can do additional optimizations with inlining and the resulting function will be
only afraction of size of the original one.

Think assembly - make it easier for the compiler to optimize your code.

Avoid using mal | oc() , which is very slow. For memory allocations that only need to live for the
lifetime of one thread, usesql _al | oc() instead.

Functions return zero on success, and non-zero on error, so you can do:

if (a() |1 b() |l c())

error ("sonet hing went wong");

Using got o isokay if not abused.

If you have an 'if' statement that ends with a 'goto’ or 'return’ you should NOT have an else state-
ment:

if (a ==Db)
return 5;
el se return 6;

->
if (a == b)

return 5;
return 6;

29

Coding Guidelines

* Avoid default variable initializations. Use LI NT_I NI T() if the compiler complains after making
sure that there isreally no way the variable can be used uninitialized.

 Use TRUE and FALSE instead of t r ue and f al se in C++ code. This makes the code more read-
able and makesit easier to use it later in aC library, if needed.

* bool existsonly in C++. In C, you have to use ny_bool (which is char); it has different cast
rulesthan bool :

int c= 256*2;

bool a=c; /* a gets '"true' */

my_bool b= c; /* b gets zero, i.e. 'false' : BAD */
my_bool b= test(c); /* b gets "true': GOOD */

In C++, use bool , unless the variable is used in C code (for example the variable is passed to a C
function).

» Do not instantiate a class if you do not have to.
» Use pointers rather than array indexing when operating on strings.

* Never pass parameters with the &vari abl e_name construct in C++. Always use a pointer in-
stead!

The reason is that the above makes it much harder for the one reading the caller function code to
know what is happening and what kind of code the compiler is generating for the call.

» Do not use the % marker of printf () (fprintf(),vprintf(), etc) because it leads to dif-
ferent outputs (for example on some Linux and Mac OS X the output starts with Ox while it does not
on some Solaris). Use 0x% x instead, even if it causes a truncation on some 64-bit platforms. Being
sure that there isalways 0x enables us to quickly identify pointer values in the DBUG trace.

» Relying on loop coutner variables being local to the loop body if declared in the f or statement is
not portable. Some compilers still don't implment this ANSI C++ specification. The symptom such
useisan error like this:

c-1101 CC. ERROR File = listener.cc, Line = 187
"i" has already been declared in the current scope.

for (int i=0; i < numsockets; i++)

Suggested modeinenacs:

(require 'font-1ock)
(require 'cc-node)
(setq gl obal -font-lock-nbde t) ;;colors in all buffers that support it
(setq font-1ock-maxi num decoration t) ;;maxi num col or
(c-add-style "My
' ("K&R'
L} (II WII
(c-basic-offset . 2)
(c-conment-only-line-offset . 0)
(c-offsets-alist . ((statenent-block-intro . +)
(knr-argdecl-intro . 0)
(subst at emrent - open . 0)
(Il abel . -)
(statenment-cont . +)
(arglist-intro . c-lineup-arglist-intro-after-paren)

30

Coding Guidelines

(arglist-close . c-lineup-arglist)

)))

(setq c-node-common-hook ' (I anbda ()
(c-set-style "M")
(setq tab-wi dth 8)
(setq i ndent-tabs-nbpde t)
(setq conment-col unm 48)))

(c-set-style "M™)
(setq c-default-style "M")

Basic vi msetup:

set tabstop=8

set shiftw dth=2

set backspace=2

set softtabstop

set snartindent

set ci ndent

set cinoptions=g0: 0t 0c2C1(0f0l 1

"set expandtab "unconment if you don't want to use tabstops

Another vi msetup:

set tabstop=8

set shiftw dth=2

set bs=2

set et

set sts=2

set tw=78

set formatoptions=cqroal

set cinoptions=g0: 0t 0c2C1(0f0l 1
set cindent

function Insert ShiftTabW apper ()
I et num spaces = 48 - virtcol ('.")

let line =" "
whi l e (num spaces > 0)

let line =1line . "'

| et num spaces = num spaces - 1
endwhi | e

return line
endfuncti on
" junp to 48th colum by Shift-Tab - to place a coment there
i noremap <S-tab> <c-r>=lnsert Shift TabW apper () <cr>
" highlight trailing spaces as errors
| et c_space_errors=1
DBUG Tags

Here are some of the DBUG tags we now use:

* enter
Arguments to the function.

e exit

31

Coding Guidelines

Results from the function.
« info
Something that may be interesting.
e warni ng
When something doesn't go the usual route or may be wrong.
s error
When something went wrong.
 |loop
Writein aloop, that is probably only useful when debugging the loop. These should normally be de-
leted when you are satisfied with the code and it has been in real use for awhile.

Some tags specific to nysql d, because we want to watch these carefully:

e trans

Starting/stopping transactions.
e quit

i nf o whennysql d ispreparing to die.
e query

Print query.

32

Chapter 3. The Optimizer

Definitions

This description uses a narrow definition: The OPTIMIZER is the set of routines which decide what ex-
ecution path the DBM S should take for queries.

MySQL changes these routines frequently, so you should compare what is said here with what's in the
current source code. To make that easy, this description includes notes referring to the relevant routine,
for example"See: / sql / sel ect _cc,optinize_cond()".

When one query is changed into another query which delivers the same result, that is a TRANSFORM-
ATION. For example, the DBMSS could change

SELECT ... WHERE 5 = a

to

SELECT ... WHERE a = 5

Most transformations are less obvious. Some transformations result in faster execution.
The Code

Here is a diagram showing the code structure of handl e_sel ect () in/sql/sql _sel ect. cc,
the server code that handles a query:

handl e_sel ect ()
nysql _sel ect()
JA N: : prepare()
setup_fields()
JON: :optimze() /* optimzer is fromhere ... */

optim ze_cond()

opt _sum query()

make_join_statistics()

get _qui ck_record_count ()
choose_pl an()
/* Find the best way to access tables */
/* as specified by the user. */
optim ze_straight_join()
best access_pat h()
/* Find a (sub-)optinmal plan anong all or subset */
/* of all possible query plans where the user */
/* controlls the exhaustiveness of the search. */
greedy_search()
best _extension_by |imted_search()
best _access_pat h()

/* Perform an exhaustive search for an optimal plan */

find_best()
make_j oi n_sel ect () [* ... to here */
JA N: : exec()

The indentation in the diagram shows what calls what. Thus you can see that handl e_sel ect ()
calsnysql _sel ect () which callsJO N: : prepar e() which callssetup fields(), and so
on. The first part of mysqgl sel ect() is JO N : prepare() which is for context analysis,
metadata setup, and some subquery transformations. The optimizer isJO N: : opti ni ze() and dl its
subordinate routines. When the optimizer finishes, JO N: : exec() takes over and does the job that

33

The Optimizer

JO N: : optim ze() decidesupon.

Although the word “ JOIN” appears, these optimizer routines are for al query types.

The optimze cond() and opt_sum query() routines do transformations. The
nmake join_statistics() routine puts together al the information it can find about indexes that
might be useful for accessing the query'stables.

Constant Propagation

A transformation takes place for expressions like this:

WHERE col utml = col um2 AND col um2 = 'x'

For such expressions, since it is known that “if A=B and B=C then A=C" (the Transitivity Law), the
transformed condition becomes:

WHERE col um1="x"'" AND col um2="x'

This transformation occurs for col utm1l <operator> col utm2 conditions if and only if
<oper at or > is one of these operators:

= <, >, <=, >= <> <=> LIKE

That is, transitive transformations don't apply for BETWEEN. Probably they should not apply for LI KE
either, but that's a story for another day.

Constant propagation happens in aloop, so the output from one “propagation step” can be input for the
next step.

See: /sql / sql _sel ect. cc, change_cond_ref to _const(). Or see: /
sqgl / sql _sel ect. cc, propagat e_cond_constants().

Dead Code Elimination
A transformation takes place for always-true conditions:

WHERE 0=0 AND col umil="y"

Thefirst condition is always true, so it is removed, leaving:

WHERE col umi1="y"

See:/ sql / sqgl _sel ect. cc,renove_eq_conds().
A transformation takes place for always-false conditions:

WHERE (0 = 1 ANDs1 =5) ORsl =7

The parenthesized part is aways false, so it is removed, reducing the expression above to:

WHERE s1 = 7

Sometimes the optimizer might eliminate the whole WHERE clause:

34

The Optimizer

WHERE (0 = 1 AND s1 = 5)

The EXPLAI N statement will show the words | npossi bl e WHERE. Informally, we at MySQL say:
“The WHERE has been optimized away.”

If a column cannot be NULL, the optimizer removes any non-relevant | S NULL conditions. Thus,

VWHERE not _null _colum | S NULL

is an always-false situation, and
VWHERE not _nul |l _colum 'S NOT NULL
is an always-true situation --- so such columns are also eliminated from the conditional expression. This

can be tricky. For example, in an OUTER JA N, a column which is defined as NOT NULL might still
contain aNULL. The optimizer leaves| S NULL conditions alone in such exceptional situations.

The optimizer will not detect all possiblei npossi bl e WHERE situations --- there are too many. For
example:

CREATE TABLE Tabl el (columl CHAR(1));

SELECT * FROM Tabl el WHERE col urml = ' Canada’ ;

The optimizer will not eliminate the condition in the query, even though the CREATE TABLE definition
makes it an impossible condition.

Constant Folding

A transformation takes place for this expression:

WHERE columl =1 + 2
which becomes:
VWHERE col uml = 3

Before you say “but | never would write 1 + 2 in the first place” --- remember what was said earlier
about constant propagation. It is quite easy for the optimizer to put such expressions together. This pro-
cess simplifies the result.

Constants and Constant Tables

A MySQL “constant” is something more than a mere literal in the query. It can also be the contents of a
“constant table,” which is defined as follows:

1. A tablewith zero rows, or with only one row

2. A table expression that is restricted with a WHERE condition, containing expressions of the form
col utmm = const ant, for al the columns of the table's PRI MARY KEY, or for al the columns
of any of the table's UNI QUE keys (provided that the UNI QUE columns are also defined as NOT
NULL).

35

The Optimizer

For example, if the table definition for Tabl e0 contains

PRI MARY KEY (col uml, col um?2)

then this expression

FROM Tabl e0 ... WHERE col umi1=5 AND col um2=7 ...

returns a constant table. More simply, if the table definition for Tabl el contains

uni que_not _null _colum | NT NOT NULL UNI QUE

then this expression

FROM Tabl el ... WHERE uni que_not _nul | _col utm=5

returns a constant table.

These rules mean that a constant table has at most one row value. MySQL will evaluate a constant table
in advance, to find out what that value is. Then MySQL will “plug” that value into the query. Here's an
example:

SELECT Tabl el. uni que_not _nul |l _col umm, Tabl e2. any_col um
FROM Tabl el1, Tabl e2
WHERE Tabl el. uni que_not_null _col umm = Tabl e2. any_col umm
AND Tabl el. uni que_not _null _colum = 5;

When evaluating this query, MySQL first finds that table Tabl el --- after restriction with Ta-
bl el. uni que_not _nul | _col um --- is a constant table according to the second definition above.
So it retrieves that value.

If the retrieval fails (there is no row in the table with uni que_not _nul | _col umm = 5), then the
constant table has zero rows and you will see this message if you run EXPLAI N for the statement:

| mpossi bl e WHERE noticed after readi ng const tables

Alternatively, if the retrieval succeeds (there is exactly one row in the table with
uni que_not _nul I _col um = 5), then the constant table has one row and MySQL transforms the
guery to this:

SELECT 5, Tabl e2. any_col um
FROM Tabl el, Tabl e2
WHERE 5 = Tabl e2. any_col umm
AND 5 = 5;

Actualy this is a grand-combination example. The optimizer does some of the transformation because
of constant propagation, which we described earlier. By the way, we described constant propagation first
because it happens happens before MySQL figures out what the constant tables are. The sequence of op-
timizer steps sometimes makes a difference.

Although many queries have no constant-table references, it should be kept in mind that whenever the
word “constant” is mentioned hereafter, it refers either to aliteral or to the contents of a constant table.

See:/sql /sql _sel ect.cc,make _join_statistics().

36

The Optimizer

Join Type

When evaluating a conditional expression, MySQL decides what “join type” the expression has. (Again:
despite the word “join,” this applies for al conditional expressions, not just join expressions. A term like
“accesstype” would be clearer.) These are the documented join types, in order from best to worst:

system ... a systemtable which is a constant table
const ... a constant table

eq_ref ... unique/primary index with '=" for joining
ref ... index with '=

ref _or_null ... index with '=", possibly NULL

range ... index with BETWEEN, IN, >=, LIKE, etc.

i ndex ... sequential scan of index

ALL ... sequential scan of table

See: /sql/sqgl _select.h, enum join_type{}. Notice that there are a few other
(undocumented) join types too, for subqueries.

The optimizer can use the join type to pick a“driver expression.” For example, consider this query:
SELECT *

FROM Tabl el
WHERE i ndexed_colum = 5 AND uni ndexed _colum = 6

Sincei ndexed_col umm has a better join type, it is more likely to be the driver. Y ou'll see various ex-
ceptions as this description proceeds, but thisisasimplefirst rule.

What is significant about a driver? Consider that there are two execution paths for the query:

(The Bad Execution Path) Read every row in the table. (Thisis called a*“ sequential scan of Tabl e1” or
just “table scan.”) For each row, examine the vaues in i ndexed_col umm and in uni n-
dexed_col um, to seeif they meet the conditions.

(The Good Execution Plan) Viathe index, look up the rows which havei ndexed_col um = 5. (This
is called an “indexed search.”) For each row, examine the value in unindexed_column to see if it meets
the condition.

An indexed search generally involves fewer accesses than a sequential scan, and far fewer accesses if
the table islarge but the index is UNIQUE. That is why it is better to access with “ The Good Execution
Plan,” and that iswhy it is often good to choose indexed_column as the driver.

The'range' Join Type

Some conditions can work with indexes, but over a (possibly wide) range of keys. These are known as
“range” conditions, and are most often encountered with expressions involving these operators. >,
>=, <, <=, IN, LIKE, BETWEEN

To the optimizer, this expression:

columl IN (1,2, 3)

isthe same as this one:

columl =1 ORcoluml =2 OR columl = 3

and MySQL treats them the same --- there is no need to change IN to OR for a query, or vice versa.

37

The Optimizer

The optimizer will use an index (range search) for

col uml LIKE ' x%

but not for

col uml LIKE " %'

That is, thereis no range search if the first character in the pattern is awildcard.
To the optimizer,

col uml BETVWEEN 5 AND 7

is the same as this expression

columl >= 5 AND columl <= 7

and again, MySQL treats both expressions the same.

The optimizer may change a Range to an ALL join type if a condition would examine too many index
keys. Such a change is particularly likely for < and > conditions and multiple-level secondary indexes.
See: (for Myl SAMindexes) / nyi saml mi _range.c,m _records_in_range().

Thei ndex Join Type

Consider this query:

SELECT col um1 FROM Tabl el;

If col utm1 isindexed, then the optimizer may choose to retrieve the values from the index rather than
from the table. An index which is used thisway is called a“ covering index” in most texts. MySQL just
uses theword “index” in EXPLAI N descriptions.

For this query:

SELECT col um1, col umm2 FROM Tabl el;

the optimizer will use “jointype =i ndex” only if the index has this definition:

CREATE I NDEX ... ON Tablel (col uml, colum?2);

In other words, al columnsin the select list must be in the index. (The order of the columns in the index
does not matter.) Thus it might make sense to define a multiple-column index strictly for use as a cover-
ing index, regardless of search considerations.

Transposition

MySQL supports transpositions (reversing the order of operands around arelational operator) for simple
expressions only. In other words:

WHERE - 5 = columl

38

The Optimizer

becomes:

VWHERE columl = -5

However, MySQL does not support transpositions where arithmetic exists. Thus:

WHERE 5 = -col umml

is not treated the same as:

VWHERE col uml = -5

Transpositions to expressions of the form <col utm>=<const ant > are ideal for index lookups. If an
expression of this form refers to an indexed column, then MySQL always uses the index, regardless of

the table size. (Exception: if the table has only zero rows or only one row, it is a constant table and re-
ceives special treatment. See the earlier section "Constants and Constant Tables'.)

AND
The ANDed search hasthe form <condi ti on> AND <condi ti on>, asin:

WHERE columl = "x' AND colum2 ="'y’
Here the optimizer's decisioniis.

1. If (neither condition isindexed) use sequential scan.

2. Otherwise, if (one condition has better join type) then pick a driver based on join type (see the
earlier section "Join Type").

3. Otherwise, since (both conditions are indexed and have equal join type) pick a driver based on the
first index that was created.

The optimizer can also choose to perform ani ndex_ner ge index intersection, as described here:
http://dev.mysgl.com/doc/ref man/5.0/en/index-merge-intersection.html.

Here's an example:

CREATE TABLE Tabl el (s1 INT, s2 INT);
CREATE | NDEX | ndex1 ON Tabl el (s2);
CREATE | NDEX | ndex2 ON Tabl el (sl);

SELECT * FROM Tabl el WHERE s1 = 5 AND s2 = 5;
When choosing a strategy to solve this query, the optimizer pickss2 = 5 asthe driver because the in-

dex for s2 was created first. Regard this as an accidental effect rather than a rule --- it could change at
any moment.

OR
The ORed search has the form "<condition> OR <condition>" asin:

WHERE columl = 'x' OR colum2 ="y’

39

http://dev.mysql.com/doc/refman/5.0/en/index-merge-intersection.html

The Optimizer

Here the optimizer's decision is:
Use a sequential scan.
There is aso an option to use index merge under such circumstances. See Section 3.1.2, “Index Merge

Optimizer” and http://dev.mysqgl.com/doc/refman/5.1/en/index-merge-optimization.html for more in-
formation.

The above warning does not apply if the same column is used in both conditions. For example:

WHERE columil = 'x' OR columl ="y’

In such a case, the search is indexed because the expression is a range search. This subject will be revis-
ited during the discussion of the | N predicate.

UNION

All SELECT statements within a UNI ON are optimized separately. Therefore, for this query:

SELECT * FROM Tabl el WHERE col umm1l " x'

UNI ON ALL
SELECT * FROM TABLE1 WHERE col um?2 "y

if both col utm1 and col unm2 are indexed, then each SELECT is done using an indexed search, and
the result sets are merged. Notice that this query might produce the same results as the query used in the
OR example, which uses a sequential scan.

NOT, <>

Itisalogical rulethat

columl <> 5

isthe same as

columl <5 OR columl > 5

However, MySQL does not transform in this circumstance. If you think that a range search would be
better, then you should do your own transforming in such cases.

Itisalso alogical rule that

WHERE NOT (columl != 5)

isthe same as

VWHERE columl = 5

However, MySQL does not transform in this circumstance either.
We expect to add optimizations soon for both the above cases.

ORDER BY

40

http://dev.mysql.com/doc/refman/5.1/en/index-merge-optimization.html

The Optimizer

In general, the optimizer will skip the sort procedure for the ORDER BY clause if it sees that the rows
will bein order anyway. But let's examine some exceptional situations.

For the query:
SELECT col uml FROM Tabl el ORDER BY ' x';

the optimizer will throw out the ORDER BY clause. Thisis another example of dead code elimination.
For the query:
SELECT col uml FROM Tabl el ORDER BY col umi;

the optimizer will use an index on col urm1, if it exists.

For the query:

SELECT col utmml FROM Tabl el ORDER BY col umi+1;

the optimizer will use an index on col umm1, if it exists. But don't let that fool you! The index is only
for finding the values. (It's cheaper to do a sequential scan of the index than a sequential scan of the ta-
ble, that's why i ndex is a better join type than ALL --- see "The 'index' Join Type" section, earlier.)
There will still be afull sort of the results.

For the query:

SELECT * FROM Tabl el

VWHERE columl > 'x' AND colum2 > 'Xx'
ORDER BY col umz2;

if both col utm1 and col unMm2 are indexed, the optimizer will choose an index on ... col utm1. The
fact that ordering takes place by col unm2 values does not affect the choice of driver in this case.

See: /sql/sql _select.cc, test_if_order_by_key(), and /sqgl/sql_sel ect. cc,
test if _skip_sort_order().

There is a description of the internal sort procedure in the MySQL Reference Manual, in section 5.2.8
“How MySQL optimizes ORDER BY.” We will not repeat it here, but urge you to read it because it in-
cludes a description of how the buffering and the quicksort operate.

See:/sql /sql _select.cc,create_sort _index().

GROUP BY

These are the main optimizations that take place for GROUP BY and related items (HAVI NG, COUNT() ,
MAX() , M N() , SUM)) , AVE() , DI STI NCT()).

e GROUP BY will useanindex, if one exists.

* GROUP BY will use sorting, if there is no index. The optimizer may choose to use a hash table.

» For thecase GROUP BY x ORDER BY X, the optimizer will realize that the ORDER BY is unne-
cessary, because the GROUP BY comes out in order by x.

e The optimizer contains code for shifting certain HAVI NG conditions to the WHERE clause; however,

41

The Optimizer

this code is not operative a time of writing. See: /sql/sqgl _select.cc,
JO N :optinze(), after #i fdef HAVE REF TO FI ELDS.

If the table handler has a quick row-count available, then the query

SELECT COUNT(*) FROM Tabl el;

gets the count without going through all the rows. Thisis true for Myl SAMtables, but not for | n-
noDB tables. Note that the query

SELECT CQOUNT(col um1) FROM Tabl el;

is not subject to the same optimization, unless col unm1 isdefined as NOT NULL.
New optimizations exist for MAX() and M N() . For example, consider the query
SELECT MAX(col unml)

FROM Tabl el
VWHERE columl < 'a';

If col um1 isindexed, then it's easy to find the highest value by looking for * a' in the index and
going back to the key before that.
The optimizer transforms queries of the form

SELECT DI STI NCT col uml FROM Tabl el;

to

SELECT col uml FROM Tabl el GROUP BY col umi;

if and only if both of these conditions are true:

e« The GROUP BY can be done with an index. (This implies that there is only one table in the
FROMclause, and no WHERE clause.)

e ThereisnoLl M T clause.
Because DI STI NCT is not always transformed to GROUP BY, do not expect that queries with DI S-

T1 NCT will always cause ordered result sets. (Y ou can, however, rely on that rule with GROUP BY,
unless the query includes ORDER BY NULL.)

See: /sql/sql _select.cc, opt_sumaquery(), and /sqgl/sql_select.cc, re-
nove_dupl i cates().

JOIN

Bad join choices can cause more damage than bad choices in single-table searches, so MySQL de-
velopers have spent proportionally more time making sure that the tables in a query are joined in an op-
timal order and that optimal access methods (often called “access paths’) are chosen to retrieve table
data. A combination of afixed order in which tables are joined and the corresponding table access meth-
ods for each table is called “ query execution plan” (QEP). The goal of the query optimizer isto find an
optimal QEP among all possible such plans. There are several general ideas behind join optimization.

42

The Optimizer

Each plan (or part of plan) is assigned a“cost.” The cost of a plan reflects roughly the resources needed
to compute a query according to the plan, where the main factor is the number of rows that will be ac-
cessed while computing a query. Once we have a way to assign costs to different QEPs we have a way
to compare them. Thus, the goal of the optimizer isto find a QEP with minimal cost among all possible
plans.

In MySQL, the search for an optimal QEP is performed in a bottom-up manner. The optimizer first con-
siders al plans for one table, then all plans for two tables, and so on, until it builds a complete optimal
QEP. Query plans that consist of only some of the tables (and predicates) in a query are called “partial
plans.” The optimizer relies on the fact that the more tables are added to a partial plan, the greater its
cost. This allows the optimizer to expand with more tables only the partial plans with lower cost than the
current best complete plan.

The key routine that performs the search for an optimal QEP is sql /sql _sel ect. cc,
find_best (). It performs an exhaustive search of al possible plans and thus guarantees it will find
an optimal one.

Below we represent f i nd_best () in an extremely free translation to pseudocode. It is recursive, so
some input variables are labeled “so far” to indicate that they come from a previous iteration.

remai ning_tables = {t1, ..., tn}; /* all tables referenced in a query */

procedure find_best (
partial _plan in, /[* in, partial plan of tables-joined-so-far */
partial plan_cost, /* in, cost of partial _plan */
remai ni ng_t abl es, /* in, set of tables not referenced in partial _plan */
best plan_so far, /* in/out, best plan found so far */
best plan_so far _cost)/* in/out, cost of best plan_so far */

for each table T fromrenmi ning_tabl es

/* Cal culate the cost of using table T. Factors that the
optim zer takes into account may incl ude:
Many rows in table (bad)
Many key parts in comopn with tables so far (very good)
Restriction nmentioned in the WHERE cl ause (good)
Long key (good)
Uni que or prinary key (good)
Ful | -text key (bad)
O her factors that may at sone tine be worth considering:
Many col ums in key
Short average/ maxi num key | ength
Smal | table file
Few |l evel s in index
Al ORDER BY / GROUP colums conme fromthis table */
cost = conpl ex-series-of-cal cul ati ons;
/* Add the cost to the cost so far. */
partial _plan_cost+= cost;

if (partial _plan_cost >= best _plan_so far_cost)
/* partial _plan_cost already too great, stop search */
conti nue;

partial _pl an= expand partial _plan by best_access_net hod,;
remai ni ng_tabl es= remaining_tables - table T,
if (remaining_tables is not an enpty set)

find_best(partial _plan, partial_plan_cost,
remai ni ng_t abl es,
best plan_so _far, best plan_so far_cost);

el se

43

The Optimizer

best plan_so_far_cost= partial _plan_cost;
best plan_so far= partial _plan;

}
}
}

Here the optimizer applies a“ depth-first search algorithm.” It tries estimates for every table in the FROM
clause. It will stop a search early if the estimate becomes worse than the best estimate so far. The order
of scanning will depend on the order that the tables appear in the FROMclause.

See:/sqgl/table.h,struct st_table.
ANALYZE TABLE may affect some of the factors that the optimizer considers.
Seealso:/sql /sqgl _sql ect.cc,make_join_statistics().

The straightforward use of f i nd_best () and gr eedy_sear ch() will not apply for LEFT JO N
or Rl GHT JA N. For example, starting with MySQL 4.0.14, the optimizer may change a left join to a
straight join and swap the table order in some cases. See aso “5.2.7 How MySQL Optimizes LEFT
JO Nand Rl GHT JO N’ inthe MySQL Reference Manual.

3.1. The I ndex Mer ge Join Type

3.1.1. Overview

I ndex Mer ge is used when table condition can be converted to form:
cond_1 ORcond 2 ... OR cond_N
The conditions for conversion are that each cond_i can be used for a range scan, and no pair

(cond_i, cond_j) usesthe sameindex. (If cond_i and cond_j usethe sameindex, then cond_i
OR cond_j can be combined into a single range scan and no merging is necessary.)

For example, | ndex Mer ge can be used for the following queries:

SELECT * FROMt WHERE keyl=cl OR key2<c2 OR key3 IN (c3,c4);

SELECT * FROMt WHERE (keyl=cl OR key2<c2) AND nonkey=c3;

I ndex Mer ge isimplemented as a*“container” for range key scans constructed from cond_i condi-
tions. When doing | ndex Mer ge, MySQL retrieves rows for each of the keyscans and then runs them

through a duplicate elimination procedure. Currently the Uni que class is used for duplicate elimina
tion.

3.1.2. Index Merge Optimizer
3.1.2.1. Range Optimizer

For Range-type queries, the MySQL optimizer builds a SEL_ TREE object which represents a condi-
tionin thisform:

range_cond = (cond_key_1 AND cond_key_2 AND ... AND cond_key_N)

The Optimizer

Each of cond_key_ i is a condition that refers to components of one key. MySQL creates a
cond_key_i condition for each of the usable keys. Then the cheapest condition cond_key i isused
for doing range scan.

A singlecond_key i condition isrepresented by a pointer-linked network of SEL_ ARG objects. Each
SEL_ ARG object refers to particular part of the key and represents the following condition:

sel _arg cond= (inf_val < key part_n AND key part_n < sup_val)
AND next key part_sel arg cond

(1)
(2)
OR left_sel _arg _cond (3)
OR right_sel __arg_cond (4)

1. isfor aninterval, possibly without upper or lower bound, either including or not including bound-
ary values.

2. isfor aSEL_ARGobject with condition on next key component.

3. isfor a SEL_ARG object with interval on the same field as this SEL_ ARG object. Intervals of cur-
rent and “left” object aredigointand| eft _sel _arg_cond. sup_val <= inf_val.

4. isfor a SEL_ARG object with interval on the same field as this SEL_ ARG object. Intervals of cur-
rent and “right” object aredigointand| eft _sel _arg_cond. m n_val >= max_val.

MySQL is able to convert arbitrary-depth nested AND-OR conditions to the above conjunctive form.

3.1.2.2. Index Merge Optimizer

A single SEL_ TREE object cannot be constructed for conditions that have different members of keysin
the OR clause, like in condition:

keyl < cl OR key2 < c2
Beginning with MySQL 5.0, these conditions are handled with the | ndex Mer ge method, and its

range optimizer structure, class SEL | MERGE. SEL | MERGE represents a disunction of severa
SEL_TREE objects, which can be expressed as:

sel _imerge cond = (t_ 1 ORt_ 1 OR... ORt_n)
where each of t _i stands for a SEL_ TREE object, and no pair (t _i ,t _j) of distinct SEL_ TREE ob-
jects can be combined into single SEL_ TREE object.

The current implementation builds SEL_| MERGE only if no single SEL_ TREE object can be built for
the part of the query condition it has analyzed, and discards SEL_ TREE immediately if it discovers that
asingle SEL_ TREE object can be constructed. Thisis actualy alimitation, and can cause worse row re-
trieval strategy to be used. E.g. for query:

SELECT * FROMt WHERE (goodkeyl=cl OR goodkeyl=c2) AND badkey=c3

scan on badkey will be chosen evenif | ndex Mer ge on(goodkey1, goodkey) would be faster.

The I ndex Mer ge optimizer collects a list of possible ways to access rows with | ndex Mer ge.
Thislist of SEL_| MERGE structures represents the following condition:

(t_11 ORt_12 OR ... OR t_1k) AND

45

The Optimizer

(t. 21 ORt 22 OR... ORt_2l) AND
- AND
(t.M ORt_ M OR... ORt_np)
wheret _ij isone SEL_TREE and onelineisfor one SEL_ | MERGE abject.
The SEL_| MERGE object with minimal cost is used for row retrieval.

In sql /opt _range.cc, seeinerge_list_and_ list(),inerge_list_or_list(), and
SEL | MERCGE class member functions for more details of | ndex Mer ge construction.

See the get _i ndex_rmer ge_par ans function in the same file for | ndex Mer ge cost calculation
algorithm.

3.1.3. Row Retrieval Algorithm

I ndex Mer ge worksin two steps:
Preparation step:

activate 'index only';
foreach key_i in (key_scans \ clustered_pk_scan)

while (retrieve next (key, rowid) pair fromkey_i)
if (no clustered PK scan ||

row doesn't match clustered PK scan condition)
put rowid into Unique;

}

deactivate 'index only';

Row retrieval step:
or each rowid in Unique

retrieve row and pass it to output;

f
{
}
if (clustered_pk_scan)

{

while (retrieve next row for clustered pk_scan)
pass row to output;
}

See: sqgl / opt _range. cc, QU CK_| NDEX_ MERGE_SELECT class members for | ndex Mer ge
row retrieval code.

46

Chapter 4. Important Algorithms and
Structures

MySQL uses many different algorithms and structures. This chapter triesto describe some of them.

4.1. The Item class

To us, the word Item means more than just Thingamabob, it is a technical term in the context of our
source code. Item is a class, and al instances of the Item class have (a) an analogue in the SQL lan-
guage, (b) avalue, (c) adatatype descriptor. The following SQL thingamabobs all have analoguesin the
Item class: literals, column references, session or global variables, procedure variables, and parameters.
And aso: any SQL function (not a surprise since SQL functions have data types and return values). In
the "function" category we include operators such as + and ||, because operators are merely functions
that return values, and we include operators such as = and LIKE, which are operators that return boolean
values. Consider the following statement:

SELECT UPPER(col um1l) FROMt WHERE col um2 = @&

For this statement, MySQL will need to store alist of items for the select list (‘columnl' column refer-
ence and UPPER function), and alist of items for the WHERE clause (‘column2' column reference and
'‘@x' variable and '=" operator).

Terminology: an Item instance in aMySQL program roughly corresponds to a"site", which according to
the standard_SQL definition is "a place that holds an instance of a value of a specified data type", An-
other word that you'll see often in MySQL code is "field", which means column reference, and the
Item_field subclassis generally for column values that occur for the intersection of arow and columnin
atable.

MySQL's Item classis defined in .../sgl/item.h, and its subclasses are defined in .../sgl/item* .h (that is, in
item.h, item_cmpfunc.h, item_func.h, item_geofunc.h, item_row.h, item_strfunc.h, item_subselect.h,
item_sum.h, item_timefunc.h). Page-width limitations prevent us from displaying the whole tree, but
these are the main Item subclasses, and the subclasses of the subclasses:

mident (Itemfield, Itemref)

m nul |

mnum (Itemint, ltemreal)

m _par am

mstring (Itemstatic_string func, Itemdatetinme, Itemenpty string)

m hex_string (ltembin_string)

mresult field (all "itemfunc.h" "itemsubsel ect.h" "itemsub.h" cl asses)
m copy_string

m cache (ltemcache_int, Itemcache real, Itemcache str, Itemcache_row)
m_t ype_hol der

m_r ow

.
PODDODDODDDDD DD

There's no formal classification of subclasses, but the main distinctions are by use (field, parameter,
function) and by data type (num, string).

So, how does MySQL use items? You'll find that nearly every .cc program in the /sgl directory makes
some use of the Item class and its subclasses, so thislist of programsis only partial and very general:

sql _parse.cc: Makes new itens in add_field_ to_list()
itemsum cc: Uses item func subcl asses for COUNT, AVG SUM
itembuff.cc: Where buffers for itemval ues can be stored

47

Important Algorithms and Structures

item cnpfunc.cc: Conparison functions with itemfunc subcl asses

itemcreate.cc For creating itenms that the | ex m ght use

i tem subsel ect.cc Subqueries are another type of function

nysql d. cc: When main() ends, it uses clean_up() for itemns

opt _range. cc: Uses field, conpare-condition, and val ue subcl asses
procedure. cc: Noti ce Procedure * has a pointer to an itemli st

pr ot ocol . cc: Uses send fields() to pass itemval ues back to users
sys_var. cc: System vari abl es have Item associ ati ons too

sql _base. cc: Thread-specific Itemsearchers like find field in_table()
sql _cl ass. cc: Look at cleanup_after_query()

sql _del ete. cc This (like sqgl __insert.cc etc.) has field references
sqgl _error.cc Has one of many exanples of SHOW s use of itens

sqgl _I ex. cc: Notice "add...to list" functions

sqgl _sel ect. cc The | argest programthat uses itens, apparently

udf _exanpl e. cc The conments in this program are extensive

Whenever there's a need for an SQL operation that assigns, compares, aggregates, accepts, sends, or val-
idates a site, you'll find aMySQL use of Item and its subclasses.

4.2. How MySQL Does Sorting (fi |l esort)

In those cases where MySQL must sort the result, it uses the following fi | esort algorithm before
MySQL 4.1:

1. Read all rows according to key or by table scanning. Rows that don't match the WHERE clause are
skipped.

2. For each row, store a pair of values in a buffer (the sort key and the row pointer). The size of the
buffer isthe value of thesor t _buf f er _si ze system variable.

3. When the buffer gets full, run a gsort (quicksort) on it and store the result in atemporary file. Save
apointer to the sorted block. (If al pairsfit into the sort buffer, no temporary fileis created.)

4. Repeat the preceding steps until all rows have been read.

5. Do amulti-merge of up to MERGEBUFF (7) regions to one block in another temporary file. Repeat
until all blocks from the first file are in the second file.

6. Repeat the following until there are fewer than MERGEBUFF2 (15) blocks | eft.

7. Onthelast multi-merge, only the pointer to the row (the last part of the sort key) is written to ares-
ult file.

8. Read the rows in sorted order by using the row pointers in the result file. To optimize this, we read
in abig block of row pointers, sort them, and use them to read the rows in sorted order into a row
buffer. The size of the buffer isthe value of ther ead_r nd_buf f er _si ze system variable. The
codefor thisstepisinthesql / r ecor ds. cc sourcefile.

One problem with this approach is that it reads rows twice: One time when evaluating the WHERE
clause, and again after sorting the pair values. And even if the rows were accessed successively the first
time (for example, if atable scan is done), the second time they are accessed randomly. (The sort keys
are ordered, but the row positions are not.)

In MySQL 4.1 and up, afil esort optimization is used that records not only the sort key value and
row position, but also the columns required for the query. This avoids reading the rows twice. The modi-
fiedfi |l esort agorithm workslikethis:

48

Important Algorithms and Structures

1. Read therows that match the WHERE clause, as before.

2. For each row, record a tuple of values consisting of the sort key value and row position, and also
the columns required for the query.

3. Sort thetuples by sort key value
4. Retrieve the rows in sorted order, but read the required columns directly from the sorted tuples

rather than by accessing the table a second time.

Using the modified f i | esort algorithm, the tuples are longer than the pairs used in the original meth-
od, and fewer of them fit in the sort buffer (the size of which isgivenby sort _buffer _si ze). Asa
result, it is possible for the extra 1/O to make the modified approach slower, not faster. To avoid a slow-
down, the optimization is used only if the total size of the extra columns in the sort tuple does not ex-
ceed the value of the max_| engt h_f or _sort _dat a system variable. (A symptom of setting the
value of thisvariabletoo high isthat you will see high disk activity and low CPU activity.)

4.3. Bulk Insert

The logic behind bulk insert optimization is simple.

Instead of writing each key value to B-tree (that is, to the key cache, although the bulk insert code
doesn't know about the key cache), we store keys in a balanced binary (red-black) tree, in memory.
When this tree reaches its memory limit, we write all keys to disk (to key cache, that is). But since the

key stream coming from the binary tree is already sorted, inserting goes much faster, al the necessary
pages are already in cache, disk accessis minimized, and so forth.

4.4. How MySQL Does Caching

MySQL has the following caches. (Note that the some of the filenames contain an incorrect spelling of

the word “cache.”)

» Key Cache
A shared cache for all B-tree index blocks in the different NISAM files. Uses hashing and reverse
linked lists for quick caching of the most recently used blocks and quick flushing of changed entries
for aspecific table. (mysys/ nf _keycash. c)

* Record Cache

This is used for quick scanning of al records in a table. (mysys/ nf _i ocash. ¢ and i san
_cash. c)

» TableCache
This holds the most recently used tables. (sql / sql _base. cc)
* Hostname Cache

For quick lookup (with reverse name resolving). This is a must when you have a slow DNS. (sql /
host name. cc)

e Privilege Cache

To alow quick change between databases, the last used privileges are cached for each user/database

49

Important Algorithms and Structures

combination. (sql / sgl _acl . cc)
Heap Table Cache

Many uses of GROUP BY or DI STI NCT cache all found rows in a HEAP table. (Thisisavery quick
in-memory table with hash index.)

Join Buffer Cache
For every “full join” in a SELECT statement the rows found are cached in a join cache. (A “full

join” here means there were no keys that could be used to find rows for the next table in the list.) In
the worst case, one SELECT query can use many join caches.

4.5. How MySQL Uses the Join Buffer Cache

Basic information about the join buffer cache:

The size of each join buffer is determined by the value of the j oi n_buf f er _si ze system vari-
able.

This buffer is used only when the join is of type ALL or i ndex (in other words, when no possible
keys can be used).

A join buffer is never alocated for the first non-const table, even if it would be of type ALL or i n-
dex.

The buffer is allocated when we need to do a full join between two tables, and freed after the query
is done.

Accepted row combinations of tables before the ALL/i ndex are stored in the cache and are used to
compare against each read row in the ALL table.

We only store the used columnsin the join buffer, not the whole rows.

Assume you have the following join:

Tabl e nane Type
tl range
t2 ref
t3 ALL

Thejoin isthen done as follows:

- Wiile rows in tl1 matching range

Read through all rows in t2 according to reference key
- Store used fields fromtl, t2 in cache
- If cache is full
- Read through all rows in t3
- Conpare t3 row against all tl, t2 conbinations in cache
- If rowsatisfies join condition, send it to client
- Enpty cache

Read t hrough all rows in t3
Conpare t3 row against all stored tl, t2 conbinations in cache
- If rowsatisfies join condition, send it to client

50

Important Algorithms and Structures

The preceding description means that the number of timestablet 3 is scanned is determined as follows:

S = size-of-stored-row(t1,t2)
C = accepted-row conbi nations(t1,t2)
scans = (S * Q/join_buffer_size + 1

Some conclusions:

e The larger the value of join_buffer_size, the fewer the scans of t3. If
j oi n_buffer_size isaready large enough to hold all previous row combinations, there is no
speed to be gained by making it larger.

» |If there are several tables of join type ALL or i ndex, then we allocate one buffer of size
j oi n_buffer_si ze for each of them and use the same algorithm described above to handle it.
(In other words, we store the same row combination several times into different buffers.)

4.6. How MySQL Handles FLUSH TABLES

» FLUSH TABLESishandledinsql / sql _base. cc::cl ose_cached_t abl es().

* The idea of FLUSH TABLES is to force all tables to be closed. This is mainly to ensure that if
someone adds a new table outside of MySQL (for example, by copying files into a database direct-
ory with cp), al threads will start using the new table. Thiswill also ensure that all table changes are
flushed to disk (but of course not as optimally as simply calling async for al tables)!

* When you do a FLUSH TABLES, the variable r ef r esh_ver si on isincremented. Every time a
thread releases a table, it checks if the refresh version of the table (updated at open) is the same as
the current r ef resh_ver si on. If not, it will close it and broadcast asignal on COND _r ef r esh
(to await any thread that iswaiting for al instances of atable to be closed).

 Thecurrentr ef resh_ver si on isaso compared to the openr ef r esh_ver si on after athread
getsalock on atable. If the refresh version is different, the thread will free all locks, reopen the table
and try to get the locks again. Thisis just to quickly get all tables to use the newest version. Thisis
handled by sqgl /1 ock.cc::mysql | ock _tabl es() and sql /
sql _base.cc::wait_for_tables().

* When all tables have been closed, FLUSH TABLES returns an okay to the client.
» If the thread that is doing FLUSH TABLES has a lock on some tables, it will first close the locked

tables, then wait until al other threads have also closed them, and then reopen them and get the
locks. After thisit will give other threads a chance to open the same tables.

4.7. Full-text Search

MySQL uses Ranking with Vector Spaces for ordinary full-text queries.

Rank, also known as relevance rank, aso known as relevance measure, is a number that tells us how
good amatchiis.

Vector Space, which MySQL sometimes calls "natural language”, is a well-known system based on a

51

Important Algorithms and Structures

metaphor of lines that stretch in different dimensions (one dimension per term) for varying distances
(one distance unit per occurrence of term). The value of thinking of it this way is: once you realize that
term occurrences are lines in a multi-dimensiona space, you can apply basic trigonometry to calculate
"distances’, and those distances are equatable with similarity measurements. A comprehensible discus-
sion of vector space technology is here: http://www.miislita.com/term-vector/term-vector-1.html. And a
text which partly inspired our origina developer is here:
ftp://ftp.cs.cornell.edu/pub/smart/smart.11.0.tar.Z ("SMART").

But let's try to describe the classic formula:

w=tf * idf

This means "weight equals term frequency times inverse of document frequency", or "increase weight
for number of times term appears in one document, decrease weight for number of documents the term
appears in". (For historical rasons we're using the word "weight" instead of "distance”, and we're using

the information-retrieval word "document" throughout; when you see it, think of "the indexed part of the
row".

For example: if "rain" appears three times in row #5, weight goes up; but if "rain" also appears in 1000
other documents, weight goes down.

MySQL uses a variant of the classic formula, and adds on some calculations for "the normalization
factor". In the end, MySQL's formulalooks something like:

w = (log(dtf)+1)/sumdtf * U (1+0.0115%U) * |og((N nf)/nf)

Where:
dt f t he nunber of times the term appears in the docunent
sundt f the sumof (log(dtf)+1)'s for all terns in the same docunent

N the total nunber of documents

is
is

U is the number of Unique terms in the docunent
is

nf is the nunber of docunents that contain the term

The formula has three parts: base part, normalization factor, global multiplier.
The base part is the left of the formula, " (log(dtf)+1)/sumdtf".

The normalization factor isthe middle part of the formula. The idea of normalization is: if a document is
shorter than average length then weight goes up, if it's average length then weight stays the same, if it's
longer than average length then weight goes down. We're using a pivoted unique normalization factor.
For the theory and justification, see the paper "Pivoted Document Length Normalization" by Amit Sing-
ha and Chris Buckley and Mandar Mitra ACM SIGIR'96, 21-29, 1996. ht-
tp://ir.iit.edu/~dagr/cs529/files/handouts/singhal 96pivoted.pdf. The word "unique" here means that our
measure of document length is based on the unique terms in the document. We chose 0.0115 as the pivot
value, it's PIVOT_VAL inthe MySQL source code header file myisam/ftdefs.h.

If we multiply the base part times the normalization factor, we have the term weight. The term weight is
what MySQL storesin the index.

The global multiplier is the final part of the formula. In the classic Vector Space formula, the final part
would be the inverse document frequency, or simply

| og(N/ nf)

We have replaced it with

52

http://www.miislita.com/term-vector/term-vector-1.html
ftp://ftp.cs.cornell.edu/pub/smart/smart.11.0.tar.Z

Important Algorithms and Structures

[og((N-nf)/nf)

This variant is more often used in "probabilistic" formulas. Such formulas try to make a better guess of
the probability that a term will be relevant. To go back to the old system, look in myisam/ftdefs.h for
"#define GWS _IN_USE GWS PROB" (i.e. globa weights by probability) and change it to "#define
GWS_IN_USE GWS IDF" (i.e. global weights by inverse document frequency).

Then, when retrieving, the rank is the product of the weight and the frequency of the word in the query:

R=w?* qf;

Where:

w is the weight (as always)

gf is the number of times the term appears in the query

In vector-space speak, the similarity is the product of the vectors.

And R is the floating-point number that you see if you say: SELECT MATCH(...) AGAINST (...)
FROM t.

To sum it up, w, which stands for weight, goes up if the term occurs more often in a row, goes down if
the term occurs in many rows, goes up / down depending whether the number of unique wordsin a row
is fewer / more than average. Then R, which stands for either Rank or Relevance, is w times the fre-
guency of the term in the AGAINST expression.

The Simplest Possible Example

First, make a fulltext index. Follow the instructions in the "MySQL Full-Text Functions" section of the
MySQL Reference Manual. Succinctly, the statements are:

CREATE TABLE articles (
id I NT UNSI GNED AUTO_| NCREMENT NOT NULL PRI MARY KEY,
title VARCHAR(200),
body TEXT,
FULLTEXT (titl e, body)

)1
I NSERT | NTO articles (t|tle body) VALUES

(" MSQ. Tutorial',' DBVMS stands for DataBase ...'),

(' How To Use M/SQ_ Well',"After you went througha...'),

(" Optimzing IWS(l','In this tutorial we will show ..."),

('1001 MySQ Tricks',"1. Never run nysqld as root. 2. ..."),

(" MySQL vs. YourS(l "In the foll owi ng dat abase con*pamson)y
(" MySQL Security', “When configured properly, MySQ ...");

Now, let's ook at the index.

There's a utility for looking at the fulltext index keys and their weights. The source code is myisam/my-
isam_ftdump.c, and the executable comes with the binary distribution. So, if exedir is where the execut-
ableis, and datadir is the directory name that you get with "SHOW VARIABLES LIKE 'datadir%", and
dbname is the name of the database that contains the articles table, then this works:

>/ exedi r/ nyi sam ftdunp /datadir/dbname/articles 1 -d

b8 0. 9456265 1001
f8 0. 9560229 conpari son
140 0. 8148246 confi gured
0 0. 9456265 dat abase

53

Important Algorithms and Structures

f8 0. 9560229 dat abase
0 0. 9456265 dbns
0 0. 9456265 mysq
38 0. 9886308 nysq
78 0. 9560229 nysq
b8 0. 9456265 nysql
f8 0. 9560229 nysdl
140 1.3796179 nysql
b8 0. 9456265 nysql d
78 0. 9560229 optim zi ng
140 0. 8148246 properly
b8 0. 9456265 r oot
140 0. 8148246 security
78 0. 9560229 show
0 0. 9456265 st ands
b8 0. 9456265 tricks
0 0. 9456265 tutoria
78 0. 9560229 tutoria
f8 0. 9560229 yoursq

L et's see how one of these numbers relates to the formula.

The term 'tutorial' appears in document 0. The full document is "MySQL Tutorial / DBMS stands for
DataBase ...". The word "tutorial" appears once in the document, so dtf = 1. The word "for" is a stop-
word, so there are only 5 unique terms in the document ("mysgl”, "tutoria”, "dbms', "stands’, "data-
base"), so U = 5. Each of these terms appears once in the document, so sumditf is the sum of log(1)+1,
five times. So, taking the first two parts of the formula (the term weight), we have:

(log(dtf)+1)/sunmdtf * U (1+0.0115*V)

whichis

(1og(1)+1)/((1og(1)+1)*5) * 5/ (1+0.0115*5)

whichis

0. 9456265

which iswhat myisam_ftdump says. So the term weight |ooks good.

Now, what about the global multiplier? Well, myisam_ftdump could calculate it, but you'll see it with
the mysqgl client. The total number of rows in the articles table is 6, so N = 6. And "tutorial" occurs in
two rows, in row 0 and in row 78, so nf = 2. So, taking the final (globa multiplier) part of the formula,
we have:

[og((N-nf)/nf)

whichis

| 0g((6-2)/2)

whichis

0.6931472

Important Algorithms and Structures

So what would we get for row 0 with a search for 'tutorial'? Well, first we want w, so: Multiply the term
weight of tutorial (which is 0.9456265) times the global multiplier (which is 0.6931472). Then we want
R, so: Multiply w times the number of times that the word 'tutorial’ appears in the search (which is 1). In
other words, R = 0.9456265 * 0.6931472 * 1. Her€e's the proof:

nmysqgl > sel ect round(0.9456265 * 0.6931472 * 1, 7) as R,
oemmamea +

1 rowin set (0.00 sec)

nysgl > sel ect round(match(title, body) against ('tutorial'), 7) as R
-> fromarticles limt 1;

oo +
| R |
Femmmeeaaaa- +
| 0.6554583 |
. +

1 rowin set (0.00 sec)

You'll need memory

The MySQL experience is that many users appreciate the full-text precision or recal, that is, the rows
that MySQL returns are relevant and the rows that MySQL misses are rare, in the judgment of some real
people. That means that the weighting formula is probably justifiable for most occasions. Since it's the
product of lengthy academic research, that's understandable.

On the other hand, there are occasional complaints about speed. Here, the tricky part is that the formula
depends on global factors -- specificaly N (the number of documents) and nf (the number of documents
that contain the term). Every time that insert/update/delete occurs for any row in the table, these global
weight factors change for al rows in the table.

If MySQL was a search engine and there was no need to update in real time, this tricky part wouldn't
matter. With occasional batch runs that redo the whole index, the global factors can be stored in the in-
dex. Search speed declines as the number of rows increases, but search engines work.

However, MySQL is a DBMS. So when updates happen, users expect the results to be visible immedi-
ately. It would take too long to replace the weights for all keys in the fulltext index, for every single up-
date/insert/delete. So MySQL only stores the local factors in the index. The global factors are more dy-
namic. So MySQL stores an in-memory binary tree of the keys. Using this tree, MySQL can calculate
the count of matching rows with reasonable speed. But speed declines logarithmically as the number of
terms increases.

Weighting in boolean mode

The basic ideais asfollows: In an expression of theform A or B or (C and D and E), either A
or B alone is enough to match the whole expression, whereas C, D, and E should all match. So it's reas-
onable to assign weight 1 to each of A, B, and (C and D and E). Furthermore, C, D, and E each
should get aweight of /3.

Things become more complicated when considering boolean operators, as used in MySQL full-text
boolean searching. Obvioudly, +A +B should be treated as A and B,and A B-asA or B. The
problem isthat +A B can not be rewritten in and/or terms (that's the reason why this---extended---set of
operators was chosen). Still, aproximations can be used. +A B C can be approximated as A or (A
and (B or C) orasA or (A and B) or (A and C) or (A and B and C).Apply-
ing the above logic (and omitting mathematical transformations and normalization) one gets that for
+A1 +tA2 ... AN B1 B2 ... B Mtheweightsshouldbe: A i = 1/N, B j=1Iif

55

Important Algorithms and Structures

N==0, and, otherwise, in the first rewriting approach B j = 1/ 3, and inthesecondone-B j =
(I+(M 1) *22"M / (M (22 (M) -1)).

The second expression gives a somewhat steeper increase in total weight as number of matched B_|
values increases, because it assigns higher weightsto individual B_j values. Also, thefirst expression is
much simpler, so it isthefirst one that isimplemented in MySQL.

4.8. FLOAT and DOUBLE data types and their
representation.

The MySQL Reference Manua has a discussion of floating-point numbers in Section 11.2 Numeric
Types, including details about the storage. Let us now take up the story from where the MySQL Refer-
ence Manual leaves off.

The following discussion concentrates on the case where no display width and decimals are given. This
means that FLOAT is stored as whatever the C type f | oat isand REAL or DOUBLE [PRECI SI ON|
is stored as whatever the C typedoubl e is. Thefield length is selected by the MySQL code.

This document was created when Bug#4457 [http://bugs.mysqgl.com/4457] (Different results in SQL-
Statements for the same record) was fixed at the end of August 2004. Until then there was some confu-
sion in the double-to-string conversion at different places in the code.

The bugfix for Bug#4937 [http://bugs.mysgl.com/4937] (I NSERT + SELECT + UNION ALL +
DATE t o VARCHAR(8) conversion problem) produced a conversion function which was a promising
approach to the conversion problems. Unfortunately it was only used for direct field conversions and not
for function results etc. It did not take small numbers (absolute value less than 1) and negative numbers
into account. It did not take the limited precision of f | oat and doubl e data types into account. The
bugfix was developed in two steps: The first attempt looked like this (in principle):

| engt h= sprintf(
if (length > fie
| engt h= sprint

buff, "%*g", field_length, nr);

[d_I| engt h)

f(buff, "%*g", field_length-5, nr);

If thel i bc conversion produces too many characters, the precision is reduced by the space required for
the scientific notation (1.234e+05). Thusthe pri nt f () conversion isforced to switch to the scientific
notation, since the value would not fit otherwise. Or, if it was scientific already, the precision is reduced
and also uses less space. | left out some important stuff around limit checking just to show the idea. This
simple algorithm should work quite well in most cases, but has been discarded for the sake of perform-
ance. The double call to the dow pri ntf () conversion %g didn't seem reasonable, though it would
only be used for extreme values and small fields. During my explorations of the code | didn't find places
where f | oat or doubl e were to be converted into small fields. Remeber that | talk only of conver-
sions where field length and precision are not given. In this case a sufficient field length is selected at
several places, except for a bug where it was selected wrongly. If afield length is given, a different con-
version is used anyway. But since the code is quite complex, | don't claim to grasp it in full, and there-
fore may bein error. So let uslook further:

The second attempt to fix the bug looked like this:

bool use_scientific_notati on=TRUE;
if (field_length < 32 & nr > 1)

{
double e[]={1, lel, le2, 1le4, le8, 1lel6 }, p=1;
for (int i—S|zeof(e) J_1<<|-- pogy -, j>>=1)
if (field_length & j)
p*=e[i];

56

http://bugs.mysql.com/4457
http://bugs.mysql.com/4937

Important Algorithms and Structures

use_scientific_notation=(p < nr);

l ength= sprintf(buff, "%*g", use scientific_notation ?
field_length-5: field_length, nr);

Here we evaluate if the string representation of a given number fits into field_length characters. If not,
we reduce the precision to make it fit. Again, | left out important details. For example, the evaluation is
done only once per field for the sake of performance. The downside here is the unconditional reduction
of precision for field length > 31 (which doesn't really matter), for negative numbers and for small num-
bers (absolute value less than 1).

Both agorithms do not take the limited precision of f | oat and doubl e values into account. This
could lead to conversions with ridiculous bogus precision output. For example a value of 0.7 converted
with % 30g will give alot of digits, which pretend to tell about deviations from the value 0.7 and are
completely absurd: 0.699999988079071044921875. To understand more about the %g conversion, |
quote from a comment introduced in the source at the beginning of bugfixing #4937 (this comment was
removed because it mainly describes, how the pri nt f () conversion works, but | think it's valuable
enough to include it here):

/*
Let's try to pretty print a floating point nunber. Here we use
"% *.*g' conversion string
I'-' stands for right-padding with spaces, if such padding will take
pl ace

"*' is a placeholder for the first argunment, field |ength, and
signifies mninal width of result string. If result is |less than
field length it will be space-padded. Note, however, that we'll not
pass spaces to Field string::store(const char *, ...), due to
strcend in the next |ine.

".*'" is a placehol der for DBL_DI G and defines nmaxi mum nunber of
significant digits in the result string. DBL_DIGis a hardware
specific C define for maxi mum nunber of decimal digits of a floating
poi nt nunber, such that rounding to hardware floating point
representation and back to decimal will not lead to | oss of
precision. That is: if DBL_D Gis 15, nunber 123456789111315 can be
represented as double w thout precision loss. As one can judge from
this description, choosing DBL_DI G here is questionable, especially
because it I ntroduces a system dependency.

'g" neans that conversion will use [-]ddd.ddd (conventional) style,
and fall back to [-]d.ddde[+|i]ddd (scientific) style if there is not
enough space for all digits.

Maxi mum | ength of result string (not counting spaces) is (I guess)
DBL DIG + 8, where 8 is 1 for sign, 1 for decimal point, 1 for
exponent sign, 1 for exponent, and 4 for exponent val ue.

/XXX: why do we use space-padding and trimspaces in the next |ine?

*

sprintf(to,"%*.*g",(int) field_length, DBL_DI G nr);

to=strcend(to,' ');

There is one small misapprehension in the comment. %4g does not switch to scientific notation when
there is 'not enough space for all digits. As the commentator says, the field length gives the minimal
output length. pri nt f () happily outputs more characters if required to produce a result with 'preci-
sion' digits. In fact it switches to scientific when the value can no longer be represented by ‘precision’ di-
gitsin conventiona notation. The man page says "Style e is used if the exponent from its conversion is
less than -4 or greater than or equal to the precision." In explanation, a precision of 3 digits can print a
value of 345 in conventional notation, but 3456 needs scientific notation, as it would require 4 digits (a
precision of 4) in conventional notation. Thus, it is printed as 3.46e+03 (rounded).

Since we don't want spaces in the output, we should not give a field length, but always use " % *g" .

57

Important Algorithms and Structures

However, the precision matters, as seen above. It isworth its own paragraph.

Since MySQL uses the machine-dependent binary representation of f | oat and doubl e to store values
in the database, we have to care about these. Today, most systems use the |EEE standard 754 for binary
floating-point arithmetic. It describes a representation for single precision numbers as 1 bit for sign, 8
bits for biased exponent and 23 bits for fraction and for double precision numbers as 1-bit sign, 11-bit
biased exponent and 52-bit fraction. However, we can not rely on the fact that every system uses this
representation. Luckily, the ISO C standard requires the standard C library to have a header f | oat . h
that describes some details of the floating point representation on a machine. The comment above de-
scribesthe value DBL_DI G Thereisan equivalent value FLT_DI Gfor the C datatypef | oat .

So, whenever we print a floating-point value, we must not specify a precision above DBL_DI G or
FLT_DI Grespectively. Otherwise we produce a bogus precision, which is wrong. For the honor of the
writer of the first attempt above, | must say that his complete algorithm took DBL_ DI Ginto account, if
however only for the second call to sprintf (). But FLT_DI G has never been accounted for. At the
conversion section of the code, it was not even known whether the value came from a f| oat or
doubl e field.

My attempt to solve the problems tries to take all this into account. | tried to concentrate all
f | oat /doubl e-to-string conversions in one function, and to bring the knowledge about f | oat versus
doubl e to this function wherever it is called. This solution managed to keep the test suite happy while
solving the new problem of Bug#4457 [http://bugs.mysql.com/4457]. Luckily the first problem was not
big, as the test cases have been very carefully selected, so that they succeed as long as the machine uses
|IEEE 754.

Nevertheless, the function is still not perfect. It is not possible to guess how many sigificant digits a
number has. Given that, it is not simple to tell how long the resulting string would be. This applies to
numbers with an absolute value smaller then 1. There are probably ways to figure this out, but | doubt
that we would win in terms of performance over the ssimple solution of the first attempt, and besides we
might cause new bugs. The compromise taken here is to accept that the resulting string may exceed the
destination field length by five characters in the worst case.

if (nr <0.0)
{

abs nr= -nr;
extra_space= 1;

el se

abs_nr= nr;
extra_space= 0;

}

precision=is _float ? FLT_ DIG: DBL_D G

if (precision > field_|length)
precision= field_|ength;

if (! initialized)

/* Better switch to scientific too early than too late. */
doubl e nul t;

mul t = 1e0;

for (length= 0; length < DBL_DI G |ength++)
mult/= lel;

mult= 1lel - nult;

doubl e val ;

val = 1. 0;

for (int idx= 0; idx < DBL_DIGtl; idx++)

DBUG PRI NT("info", ("double to string_conv: big[%] % *g",
i dx, DBL_DIG+3, val));
bi g nunber[idx]= val;

58

http://bugs.mysql.com/4457

Important Algorithms and Structures

val *= mul t;

smal | _number [0] = 1e0;
smal | _number[1] = 1e0;
smal | _number [2] = 1e0;
snmal | _nunber[3]= le-1;
snal | _nunber[4] = le-2;
snal | _nunber[5] = le-3;

snmal | _nunber[6] = le-4;
/* % switches to scientific when exponent < -4. */
for (int idx=7; idx < DBL_DI G+1; idx++)
smal | _number [idx] = le-4;
initialized= TRUE

}
use_scientific_notation= (abs_nr = 0.0) &&
((abs_nr > bi g_nunber[precision]) ||
(abs_nr < small _nunber[precision]));

if (use_scientific_notation)

<= le- 100)

if (((nr >=0.0) & ((nr >= 1e+100) || (nr)) ||
| £?r >= -1e-100))))

((nr < 0.0) && ((nr <= -1e+100) |
extra_space+= 6; /* .e+100 or .e-100
el se
} extra_space+= 5; /* .e+99 or .e-99 */

if (field_length < extra_space)
preci sion= 0;

else if (precision > (field length - extra_space))
precision= field length - extra_space;

| engt h= sprintf(buff, "%*g", precision, nr);

This solution takes performance into account by initializing the limiting numbers arrays only once into
static space. It copes with negative numbers and tries to decide even over small numbers. The latter has
only small implications, as the prefix 0.000 is exactly the same size as the postfix e-100. But knowing if
scientific notation will be selected by spri nt f () allowsfor saving one digit when the exponent is lar-
ger than -100.

The calculations for the big number array are less precise than in the second attempt, but faster. The pre-
cision is sufficient for the guess whether spri nt f () uses scientific notation. There may be number to
field length combinations which exploit the gap, but these won't emerge anyway as | found no situation
where this function is called with small field lengths. Remember again that it is not called with user-
supplied field lengths.

However in the current stable releases (including gamma) we have some places where the field length is
too small by one character. Thus, the precision is sometimes one digit smaller than DBL_DI Gwould al-
low for. Consequently, we cannot use the simple algorithm in the stable releases. There is a chance of
doing it in adevelopment release, though.

Addendum:

There turned out to be a new solution to the "big number array" problem. We have a statically initialized
array | og_10, which holds the necessary values. But | did not check whether these values are safe.
Even if computed by the compiler, they could carry values dightly above the decimal powers, which
would be bad. In this case we needed to initialize by 9.99999999e+xxx, where the number of nines is
equal to DBL_DI G This must be protected by #i f DBL_DI G == yy, sothat anew DBL_DI Gon a
new platform is detected. And the array is of limited length. We must at least protect it by a

59

Important Algorithms and Structures

DBUG _ASSERT(si zeof (1 og_10)/si zeof (1 og_10[0]) > DBL_DI G.

But al of thisis probably completely unneccessary, since we are only speaking of ceses where no user-
supplied field length is given. So MySQL selects the field length on its own. So it is totally possible, in-
deed highly desirable, that MySQL selects a field length, which allows for a maximum of precision for
all possible values. And these are DBL_DI G+7 or FLT_DI G+6 respectively asfar as |IEEE 754 is used.
In this case we can have values of about +/-1e-307 to +/-1e+308 for doubl e and +/-1e-37 to +/-1e+38
for f1 oat. That is, for example -1.<DBL_DIG-1 digits>e+100. For cases where a precision above
IEEE 754 is possible, we may need +8 instead. We can detect thiswith #i f DBL_MAX 10 _EXP >=
1000. So using a field length of DBL_DI G+8 in all cases should be sufficient for a simple
sprintf(buff, "%*g", DBL_.DIG nr) or sprintf(buff, "%*g", FLT DG
nr), respectively. To be safe, we should not use the machine dependent constants everywhere, but in-
stead concentrate them into definitions like these:

#if (DBL_I\/AX_lO_EXP > 9999) || (DBL_M N_10_EXP < -9999)

error "Need new definition for UNSPECH FI ED DOUBLE_FI ELD LENGTH'
#elif (DBL_MAX 10 _EXP > 999) || (DBL_M N _10_EXP < -999)

define UNSPECI FI ED DOUBLE FI ELD LENGTH (DBL_DI G+8)

#el se
define UNSPECI FI ED DOUBLE FI ELD LENGTH (DBL_DI G+7)
#endi f
#if (FLT_W_lO_EXP > 999) || (FLT_M N _10_EXP < -999)

#error "Need new definition for UNSPECI FI ED FLOAT FI ELD LENGTH'
#elif (FLT_MAX 10 EXP > 99) || (FLT_MN_10_EXP < -99)

define UNSPECI FI ED FLOAT FI ELD LENGTH (FLT_DI Gt7)

#el se

define UNSPECI FI ED FLOAT FI ELD LENGTH (FLT_DI G+6)

#endi f

These definitions should be used wherever an item or field of typef | oat or doubl e without an expli-
cit field length specification is encountered. We have to propagate these lengths though al derived items
and fields and we have to select the maximum of al field lengths wherever in two or more of them are
used in an expression or a function.

We need to treat the precision (DBL_DI GFLT_DI G similarly, but have to select the minimum in ex-
pressions or functions.

4.9. Threads

Threads in mysgld can run at four different priorities, defined in mysgl_priv.h:

#defi ne | NTERRUPT_PRI OR 10
#def i ne CONNECT_PRI OR 9
#defi ne WAI T_PRI OR 8
#def i ne QUERY_PRI OR 6

Some threads try to set their priority; others don't. These calls are passed along to

pthread_setschedparam() if the native threading library implementsiit.

The different threads are:

» Themainthread. Runs at CONNECT_PRIOR priority. Calls thr_setconcurrency() if it is available at
compile time; this call is generally assumed to exist only on Solaris, its value should reflect the num-

ber of physical CPUs.

e The "bootstrap" thread. See handle_bootstrap() in sql_parse.cc. The mysgl_install_db script starts a

60

4.10.

Important Algorithms and Structures

server with an option telling it to start this thread and read commands in from afile. Used to initial-
ize the grant tables. Runs once and then exits.

The "maintenance” thread. See sgl_manager_cc. Like the old "sync" daemon in unix, this thread oc-
casionally flushes myisam tables to disk. InnoDB has a separate maintenance thread, but BDB also
uses this one to occasionally call berkeley cleanup log files(). Begins at startup and persists until
shutdown.

The "handle TCP/IP sockets' thread. See handle _connections _sockets() in mysgld.cc. Loop with a
select() function call, to handle incoming connections.

The "handle named pipes" thread. Only on Windows.
The "handle shared memory connections' thread. Only on Windows.

Signal handler ("interrupt") thread. See signa_hand() in mysgld.cc. Runs at INTERRUPT_PRIOR
priority. Sets up to receive signals, and then handles them as they come in. Begins at server startup
and persists until shutdown.

The "shutdown" thread. See kill_server() in mysgld.cc. Created by the signal handling thread. Closes
all connections with close_connections(), the ends.

Active and cached per-connection threads. See handle_one_connection() in sgl_parse.cc. These can
run at QUERY_PRIOR priority or WAIT_PRIOR priority depending on what they are doing.

The "delayed” thread. See handle_delayed_insert() in sgl_insert.cc. Used for MylSAM's delayed in-
serts.

The two dave threads, in slave.cc. One thread connects to the master and handles network 10. The
other reads queries from the relay log and executes them.

In InnoDB, all thread management is handled through os/osOthread.c InnoDB's threads are:

The /O handler threads, Seeio_handler_thread().
Two "watchmen" threads. srv_lock_timeout_and_monitor_thread(), and srv_error_monitor_thread().

The master thread "which does purge and other utility operations', See srv_master_thread().

InnoDB's internal os thread set_priority() function implements three priorities (Background, normal,
and high) but only on windows. The function is a no-op on unix.

Error flags and functions

The following flags can be examined or set to alter the behavior during error handling:

t hd->net.report_error

t hd->net.report _error issetinmy_nessage_sql () if the error message was registered.
(ny_nessage_sql () iscaledbymy_error(),nmy_printf_error(),m_nessage()).

t hd- >query_error

Like net.report _error, but is always set to 1 in ny_nessage_sql () if error was not

61

Important Algorithms and Structures

caught by an error handler. Used by replication to see if a query generated any kind of errors.

e thd->no_warnings_for_error
Normally an error also generates a warning. The warning can be disabled by setting t hd-
>no_war ni ngs_for _error. (This alows one to catch all error messages generated by a state-
ment)

e thd->l ex->current_sel ect->no_error

Thisissettoincaselikes| NSERT | GNORE ... SELECT. Inthiscase weignore all not fatal er-
rors generated by the select.

e thd->is_fatal _error
Set this if we should abort the current statement (and any multi-line statements) because something
went fatally wrong. (for example, astored procedure should be able to catch this). This is reset by
mysqgl _reset _thd for_next command().

* thd->abort_on_warni ng
Strict mode flag, which means that we should abort the statement if we get a warning. In the
fi el d:: store function this changes the warning level from WARN to ERRCR. In other cases, this
flag is mostly tested with t hd- >real | y_abort_on_war ni ng() to ensure we don't abort in
the middle of an update with not transactional tables.

e thd->count _cuted fields
If set, we generate warning for field conversations (normal case for | NSERT/UPDATE/DELETE).
Thisis mainly set to 0 when doing internal copying of data between fields and we don't want to gen-
erate any conversion errors at any level.

e thd->killed
Set in case of error in connection protocol or in case of 'kill'. In this case we should abort the query
and kill the connection.

Error functions

e thd->really_abort_on_warning()

This function returns 1 if a warning should be converted to an error, like in strict mode when all
tables are transactional. The conversionishandledinsql _error. cc: : push_war ni ng() .

e thd->fatal _error()
Should be called if we want to abort the current statement and any multi-line statement.
e thd->clear_error()

Resetst hd- >net . report _error andt hd- >query_error.

4.11. Functions in the nysys Library

Functionsin nysys: (For flagsseemy_sys. h)

62

Important Algorithms and Structures

int ny_copy _A((const char *from const char *to, nmyf Ml ags));

Copy filefromf romtot o.

int ny_rename _A((const char *from const char *to, myf Ml ags));
Renamefilefromf r omtot o.

int ny_delete _A((const char *nanme, nyf M/Fl ags));

Deletefilenane.

int ny_redel _A((const char *from const char *to, int M/Fl ags));

Delete fr om before rename of to to from Copies state from old file to new file. If
MY_COPY_TI ME isset, setsold time.

int ny_getwd _A((string buf, uint size, nyf MyFlags)); ,int ny_setwd
_A((const char *dir, nyf MyFl ags));

Get and set working directory.

string my_tempnam _A((const char *dir, const char *pfx, nmyf M-
Fl ags));

Make a unique temporary file name by using di r and adding something after pf x to make the
name unique. The file name is made by adding a unique six character string and TMP_EXT after
pf x. Returns pointer to mal | oc() 'ed areafor filename. Should befreed by f r ee() .

File ny_open _A((const char *FileNane,int Flags,nyf MFlags)); ,File
my_create _A((const char *FileNane, int CreateFlags, int Accses-
Fl ags, nyf MyFlags)); ,int ny_close A((File Filedes, nyf MFIlags));
,uint my_read _A((File Filedes, byte *Buffer, uint Count, nyf M-
Flags)); ,uint nmy_ wite _A((File Filedes, const byte *Buffer, uint
Count, nyf MFlags)); , ulong ny_seek _A((File fd,ulong pos,int
whence, nyf MyFlags)); ,ulong ny_tell _A((File fd, nyf MFI ags));

Use instead of open, open-with-create-flag, close, read, and write to get automatic error messages
(flag MYF_WVE) and only haveto test for != 0 if error (flag MY_NABP).

FILE *ny_fopen _A((const char *FileNane,int Flags, myf MFlags)); ,

FILE *ny_fdopen _A((File Filedes,int Flags,nyf MFlags)); , int
my fclose _A((FILE *fd,nmyf MFlags)); , uint ny_fread _A((FILE
*stream byte *Buffer,uint Count,nyf MFlags)); , uint my fwite

_A((FILE *streamconst byte *Buffer,uint Count, nyf MHFlags)); ,
ulong ny_fseek _A((FILE *streamul ong pos,int whence, nyf M/Fl ags));
,ulong ny_ftell _A((FILE *stream nyf MyFl ags));

Same read-interface for streams as for files.

gptr _mymalloc _A((uint uSize,const char *sFile,uint uLine, nyf M-

Flag)); , gptr _nyrealloc _A((string pPtr,uint uSize,const char
*sFile,uint uLine, nyf MFlag)); ,void _nyfree _A((gptr pPtr,const
char *sFil e, uint uLine)); , int _sanity _A((const char

*sFile,unsigned int uLine)); ,gptr _nyget copy of menory _A((const
byte *fromuint |ength,const char *sFile, uint uLine, nyf MFlag));

mal | oc(si ze, nyfl ag) ismapped to these functionsif not compiled with - DSAFEMAL LOC.

63

Important Algorithms and Structures

voi d TERM NATE _A((void));

Writesmal | oc() infoon st dout if compiled with - DSAFEMALLCC.

int ny_chsize _A((File fd, ulong new ength, nyf M/Fl ags));
Change size of filef d tonewl engt h.

void ny_error _D((int nr, nyf MyFlags, ...));

Writes message using error number (see nmysys/ errors. h) on stdout, or using curses, if
MYSYS_PROGRAM _USES CURSES() has been called.

void nmy_nessage _A((const char *str, nyf M/Flags));

Writesst r onst dout , or using curses, if MYSYS_PROGRAM USES CURSES() has been called.
void nmy_init _A((void));

Start each program (in mai n()) with this.

void nmy_end _A((int infoflag));

Givesinfo about program. If i nf of | ag & MY_CHECK ERROR, printsif somefiles are left open.
Ifinfoflag & MY_G VE | NFO, printstiming info and nal | oc() info about program.

int my_copystat _A((const char *from const char *to, int M-
Fl ags));

Copy state from old file to new file. If MyY_COPY_TI ME is set, setsold time.
string nmy_filenane _A((File fd));

Returns filename of open file.

int dirnane _A((string to, const char *nane));

Copy name of directory from filename.

int test_if_hard_path _A((const char *dir_nane));
Testif di r _name isahard path (starts from root).

voi d convert _dirname _A((string nane));

Convert dirname according to system. On Windows, changes all characters to capitals and changes
1'to"\ "

string fn_ext _A((const char *nane));
Returns pointer to extension in filename.

string fn format _A((string to,const char *nane, const char
*dsk, const char *formint flag));

Format a filename with replacement of library and extension and convert between different systems.
Thet o and name parameters may beidentical. Function doesn't change nameif nane !=t o.fl ag
may be:

\ 1

‘ Force replace filnames library with 'dsk'’

64

4.12

Important Algorithms and Structures

2 Force replace extension with ‘form' */
4 Force unpack filename (replace ~ with home directory)
8 Pack filename as short as possible for output to user

AII open requeﬂs should aways use a least open(f n_f ormat (t enp_buffer, nane,
""", 4), ...) tounpack homeand convert filename to system-form.

* string fn_sane _A((string toname, const char *nane, int flag));

Copies directory and extension from name to t onamne if needed. Copying can be forced by same
flagsusedinfn_format ().

e int wild conpare _A((const char *str, const char *wldstr));

Compare if str matcheswi | dstr. wi | dstr can contain *' and '?' as wildcard characters. Re-
turnsOif st r andwi | dst r match.

e void get_date _A((string to, int tineflag));
Get current date in aform ready for printing.
 void soundex _A((string out_pntr, string in_pntr))
Makesi n_pnt r toa5 char long string. All words that sound alike have the same string.
e int init_key cache _A((ulong use_nem ulong |eave_this_rmuch_men));

Use caching of keysin MISAM, PISAM, and ISAM. KEY_CACHE_SI ZE isagood size. Remember
to lock databases for optimal caching.

* void end_key_cache _A((void));

End key caching.

Bitmaps

Inside the mysys directory is afile named my_bitmap.c. It contains functions for manipulating bitmaps.
Specifically there are functions for setup or teardown (bitmap_init, bitmap_free), for setting and clearing
individual bits or whole sections of the bitmap (bitmap set bit, bitmap fast test and set, bit-
map_clear_all, bitmap_set_all, bitmap_set_prefix, bitmap_set_above), and for performing comparisons
and set operations on two bitmaps (bitmap_cmp, bitmap_intersect, bitmap_subtract, bitmap_union). Bit-
maps are useful, so the functions are called from several places (opt_range.cc, slave.cc, mysgld.c,
sgl_insert.cc, log_event.cc, sql_show.cc) and we're expecting to make more use of them in the next ver-
sion of MySQL, MySQL 5.1.

There are a few warnings and limitations that apply for the present bitmap implementation. First: the al-
location is an integral number of bytes, and it is not possible to determine whether the last few bits are
meaningful. Second: the whole bitmap might have to be protected by a mutex for manipulations; thisis
settable by passing appropriate flag values. Third: the bitmap is allocated with a'uint' size, which means
that ordinarily it can't have more than 2/32 bytes. Fourth: when unioning two bitmaps, they must be of
the same size.

65

Chapter 5. How MySQL Performs
Different Selects

5.1. Steps of Select Execution

Every select is performed in these base steps:

* JAN: :prepare

e Initialization and linking JO N structureto st _sel ect _| ex.

fix_fields() foralitems(afterfix_fiel ds(),weknow everything about item).
* Moving HAVI NGto WHERE if possible.
 Initialization procedureif thereis one.
e« JON :optimze
* Single select optimization.
» Creation of first temporary table if needed.
* JAN::exec
« Performing select (a second temporary table may be created).
* JAON: :cleanup
« Removing all temporary tables, other cleanup.
* JON :reinit

» Prepareal structures for execution of SELECT (withJO N: : exec).

5.2.sel ect _result Class

This class has a very important role in SELECT performance with sel ect _resul t class and classes
inherited from it (usually called with asel ect _ prefix). This class provides the interface for transmit-
ting results.

The key methods in this class are the following:

* send_fi el ds sendsgivenitem list headers (type, name, etc.).
e send_dat a sendsgiven item list values as row of table of result.
* send_error is used mainly for error interception, making some operation and then

::send_error will becaled.

For example, there are the following sel ect _resul t classes:

66

How MySQL Performs Different Selects

* sel ect _send used for sending results though network layer.

* sel ect_export used for exporting datato file.

* nulti_del et e usedfor multi-delete.

 select_insert usedforl NSERT ... SELECT ...

e multi_updat e used for multi-update.

* select_singl erow subsel ect used for row and scalar subqueries..

» select_exists_subsel ect usedfor EXI STS/I NALL/ANY/SOVE subqueries.

* select_max_m n_finder_subsel ect used for min/max subqueries (ALL/ANY subquery op-
timization).

5.3. SI MPLE or PRI MARY SELECT

For performing single primary select, SELECT usesthemysql _sel ect function, which does:

+ alocateJO N

* JAN: :prepare
e JON :optimze
* JAN::exec

« JAN::cleanup

In previous versions of MySQL, all SELECT operations were performed with the help of this function
and mysql _sel ect () wasnot divided into parts.

5.4. Structure Of Complex Select

There are two structures that describe selects:

st _sel ect | ex (SELECT_LEX) for representing SELECT itself

» st_select_lex_ unit (SELECT_LEX UN T) for grouping severa selectsin abunch

The latter item represents UNI ON operation (the absence of UNI ON is a union with only one SELECT
and this structure is present in any case). In the future, this structure will be used for EXCEPT and | N-

TERSECT as well.

For example:

(SELECT ...) UNION (SELECT ... (SELECT...)...(SELECT...UN ON...SELECT))
1 2 3 4 5 6 7

will be represented as:

67

How MySQL Performs Different Selects

| evel 1
SELECT _LEX_UNI T(2)
|
oo +
| |
SELECT LEX(1) SELECT _LEX(3)
| evel 2

| |
SELECT_LEX_UNI T(4) SELECT_LEX_UNI T(6)

| |
SELECT_LEX(4) SELECT _LEX(5) SELECT_LEX(7)

Note: Single subquery 4 hasitsown SELECT _LEX UNIT.

The uppermost SELECT _LEX UNI T (#2 in example) is stored in LEX. The first and uppermost SE-
LECT _LEX (#1in example) is stored in LEX, too. These two structures always exist.

At the time of creating or performing any JO N: : * operation, LEX: : current _sel ect pointsto an
appropriate SELECT _LEX.

Only during parsing of global ORDER BY and LIM T clauses (for the whole UNI ON),

LEX:

ccurrent _sel ect pointsto SELECT _LEX UNI T of thisunit, in order to store this parameter

in this SELECT LEX UNI'T. SELECT_LEX and SELECT LEX UNIT are inherited from
st_sel ect | ex_node.

5.5. Non-Subqguery UNI ON Execution

Non-subquery unions are performed with the help of nysql _uni on() . For now, it is divided into the
following steps:

« st _select_lex unit::prepare (the same procedure can be called for single SELECT for
derived table => we have support for it in this procedure, but we will not describe it here):

Create sel ect _uni on (inherited from sel ect _r esul t) which will write select results in
this temporary table, with empty temporary table entry. We will need this object to storein every
JA Nstructurelink on it, but we have not (yet) temporary table structure.

Allocate JA N structures and execute JO N: : prepar e() for every SELECT to get full in-
formation about types of elements of SELECT list (results). Merging types of result fields and
storing them in special Items (It em t ype_hol der) will be done in this loop, too. Result of
this operation (list of types of result fields) will be stored in
st_select_lex_unit::types).

Create atemporary table for storing union results (if UNI ON without ALL option, 'distinct' para-
meter will be passed to the table creation procedure).

Assign atemporary tableto thesel ect _uni on object created in the first step.

» st _select lex unit::exec

68

How MySQL Performs Different Selects

* Delete rows from the temporary table if thisis not the first call.

e if thisisthefirst cal, cal JON: : optim ze elseJON::reinit andthenJO N. : exec
for all SELECTs (sel ect _uni on will write a result for the temporary table). If union is
cacheable and thisis not the first call, the method will do nothing.

e Cdl nmysql _sel ect ontemporary table with global ORDER BY and LI M T parameters after
collecting results from all SELECTs. A special f ake_sel ect _| ex (SELECT_LEX) which is

created for every UNI ON will be passed for this procedure (this SELECT _LEX also can be used
to store global ORDER BY and LI M T parametersif brackets used in a query).

5.6. Derived Table Execution

“Derived tables” isthe internal name for subgueriesin the FROMclause.

The processing of derived tables is now included in the table opening process
(open_and_I| ock_t abl es() call). Routine of execution derived tables and substituting temporary
tableinstead of it (nysql _handl e_deri ved()) will be called just after opening and locking all real
tables used in query (including tables used in derived table query).

If | ex->derived_tabl es flag is present, all SELECT LEX structures will be scanned (there is a
list of all SELECT LEX structuresin reverse order named | ex- >al | _sel ects_|i st , thefirst SE-
LECT in the query will belast in thislist).

There is a pointer for the derived table, SELECT _LEX_ UNI T stored in the TABLE_LI ST structure
(TABLE_LI ST: : deri ved) . For any table that has this pointer, mysql _deri ved() will becalled.

nysql _derived():
* Createsuni on_r esul t for writing resultsin this table (with empty table entry, same as for UNI -
ONs).

e cal unit->prepare() togetlist of types of result fields (it work correctly for single SELECT,
and do not create temporary table for UNI ON processing in this case).

» Creates atemporary table for storing results.
» Assign thistemporary tabletouni on_r esul t object.
» Cadlsnysqgl _sel ect ormysql _uni on to execute the query.

« If itisnot explain, then cleanup JO N structures after execution (EXPLAI N needs data of optimiza-
tion phase and cleanup them after whole query processing).

» Stores pointer to thistemporary tablein TABLE_LI ST structure, then this table will be used by out-
er query.

» Linksthistemporary tableint hd- >deri ved_t abl es for removing after query execution. This

table will be closed in close_thread_tables if its second parameter (bool
ski p_deri ved)istrue.

5.7. Subqueries

69

How MySQL Performs Different Selects

In expressions, subqueries (that is, subselects) are represented by |tem inherited from
It em subsel ect .

To hide difference in performing single SELECTs and UNI ONs, | t em subsel ect usestwo different
engines, which provide uniform interface for access to underlying SELECT or UNI ON (subse-
| ect _single_select_engine and subsel ect _uni on_engi ne, both are inherited from
subsel ect _engi ne).

The engine will be «created a the time |Item subselect is constructed
(I't em subsel ect: : i nit method).

Onltem subsel ect::fix_fields(),engine->prepare() will becalled.

Before calling any value-getting method (val , val _i nt,val str, bring_val ue (in case of row

result)) engi ne- >exec() will be called, which executes the query or just does nothing if subquery is

cacheable and has already been executed.

Inherited items have their own select_result classes. There are two types of them:

» sel ect_singl erow subsel ect, to store values of given rows in
Item singl erow subsel ect cache on send data() cal, and report error if
It em subsel ect has'assigned' attribute.

* select_exists_subsel ect just store 1 as value of |tem exists_subsel ect on

send_dat a() cdl. Sinceltem.in_subsel ect andltem al | any_subsel ect areinher-
itedfrom|tem exi sts_subsel ect, they usethesamesel ect _result class.

It em subsel ect will never cal the cl eanup() procedure for JO N. Every JO N: : cl eanup
will cal cl eanup() for inner JO Ns. The uppermost JO N: : cl eanup will be caled by
nysql _sel ect() ormysql _union().

5.8. Single Select Engine

subselect_single_select_engine:

e constructor alocate JO Nand store pointerson SELECT_LEXand JO N.
e prepare() cal JON: : prepare.

« fix_length_and_dec() prepare cache and receive type and parameters of returning items
(calledonly by I t em si ngl er ow_subsel ect).

» exec() drop 'assigned flag of Item subselect. If this is the first time call
JON:optimze ad JON :exec(), €else do nothing or JON:reinit()
JO N: : exec() depending on type of subquery.

5.9. Union Engine

subsel ect _uni on_engi ne:

e constructor juststorepointer tost _sel ect _| ex_uni on (SELECT_LEX_ UNI ON).

70

5.10.

5.11.

How MySQL Performs Different Selects

» prepare() calst_select_lex_unit::prepare.

« fix_length_and_dec() prepare cache and receive type and parameters (maximum of length)
of returning items (called only by I t em si ngl er ow_subsel ect).

« exec() cal st_select lex_unit::exec(). st_select_lex unit::exec() can
drop 'assigned' flag of | t em subsel ect if st _sel ect _lex_unit::itemisnotO.

Special Engines

There are special engines used for optimization purposes. These engines do not have a full range of fea
tures. They can only fetch data. The normal engine can be replaced with such special engines only dur-
ing the optimization process.

Now we have two such engines:

» subsel ect _uni quesubquery_engi ne used for:
| eft _expression I N (SELECT primary_key FROMtabl e WHERE condi ti ons)
This looks for the given value once in a primary index, checks the WHERE condition, and returns
“wasit found or not?’

e subsel ect _i ndexsubquery_engi ne used for:
| eft _expression IN (SELECT any_key FROM tabl e WHERE condi ti ons)
Thisfirst looks up the value of the left expression in an index (checking the WHERE condition), then
if value was not found, it checks for NULL values so that it can return NULL correctly (only if a

NULL result makes sense, for example if an | N subquery is the top item of the WHERE clause then
NULL will not be sought)

The decision about replacement of the engine happens in JO N:: optim ze, after calling
make_j oi n_r eadi nf o, when we know what the best index choiceis.

Explain Execution

For an EXPLAI N statement, for every SELECT, nysql _sel ect will be called with option SE-
LECT_DESCRI BE.

For main UNI ON, nysql _expl ai n_uni on will be called.

For every SELECT in a given union, nmysql_explain_union will call
nmysqgl _expl ai n_sel ect.

nysqgl _expl ai n_sel ect will call nysql _sel ect with option SELECT DESCRI BE.

nmysql _sel ect createsaJO Nfor select if it does not already exist (it might already exist because if
it called for subquery JOI N can be created in JO N: : opt i m ze of outer query when it decided to
caculate the value of the subquery). Then it cals JO N : prepare, JO N :optinize,
JAO N: : execand JO N: : cl eanup asusual.

JA N: : exec iscaled for SELECT with SELECT_DESCRI BE option call sel ect _descri be.

71

How MySQL Performs Different Selects

sel ect _descri be returnsthe user description of SELECT and callsmysql _expl ai n_uni on for
every inner UNI ON.

PROBLEM: how it will work with global query optimization?

72

Chapter 6. How MySQL Transforms
Subqueries

It em subsel ect virtua method sel ect _t ransf or ner isused to rewrite subqueries. It iscalled
from | t em subsel ect: :init (whichis called just after call to fi x_fi el ds() method for al
itemsinJO N: : pr epar e).

6.1.
|tem.in_subsel ect::sel ect _transforner

Itemin_subsel ect::sel ect _transforner isdivided into two parts, for the scalar |eft part
and the row left part.

6.1.1. Scalar | NSubquery

To rewrite a scalar I'N subquery, the method used is
Item.in_subsel ect::single_val ue_transforner. Scalar | N subquery will be replaced
withltem.in_optinizer.

Item.in_optim zer itemisaspecia boolean function. On avaluerequest (oneof val ,val _int,
or val _str methods) it evaluates left expression of | N by storing its value in cache item (one of
It em cache* items), then it tests the cache to see whether it is NULL. If left expression (cache) is
NULL, thenltem i n_opti m zer returnsNULL, elseit evaluatesl t em i n_subsel ect .

Example queries.

a) SELECT * fromtl where

tl.a in (SE ROM t 2) ;
b) SELECT * fromtl where tl.a in (SELECT t

2.a F
2.a FROMt2 GROUP BY t2.a);

* Item.in_subsel ect inherits the mechanism for getting a value from
Item exi sts_subsel ect.

e Sel ect _transforner storesareferenceto theleft expression in its conditions:
(in WHERE and HAVING in case 'a'" and in HAVING in case 'b")

e Item from item list of this select (t2.a) can be referenced with a specia reference
(Itemref _null _hel per oo Iltemnull _helper). This reference informs
Item.in_optim zer whetheritem (t 2. a) isNULL by setting the 'was_null' flag.

e Thereturnvaluefromlt em i n_subsel ect will be evaluated as follows:

e If TRUE, return true
e |f NULL, return null (that is, unknown)
e |If FALSE, and 'was null'is set, return null

* Return FALSE

73

How MySQL Transforms Subqueries

<left_expression> IN (SELECT <item> ...) will be represented as follows:

S +
| 1tem.in_optim zer|
o +
|
o S +
| |
o e e e e e e e oo + o e e e e oo - +
| <l eft _expressi on> | | 1'tem.in_subsel ect|
| e +
S + |
| <l'eft_expression cache>| AT AR +
| | |
i + | |
N R SR + i +
+<gg<| Itemref | +<<<| I temref_null _hel per|
R R + V T +
V o +
+>>>| <itenp |
Fom e e e e o +

where <<<<<<<<<isreferenceinmeaningof | t em r ef .

Item ref isusedto pointto <l ef t _expressi on cache>, because at the time of transformation
we know only the address of variable where the cache pointer will be stored.

If the select statement has an ORDER BY clause, it will be wiped out, because there is no sense in OR-
DER BY without LI M T here.

If I N subquery union, the condition of every select in the UNI ON will be changed individually.

If a condition needs to be added to the WHERE clause, it will be presented as (item OR item | S
NULL) and Itemis_not_null _test(item) will be added to the HAVI NG clause.
Itemis_not_null _test registersNULL valuetheway | t em ref _nul | _hel per doesit, and
returns FALSE if argument is NULL. With the above trick, we will register NULL value of | t emeven
for the case of index optimization of a WHERE clause (case 'a in the following example).

The following are examples of | N transformations:

o Examplel:
<l eft _expression> IN (SELECT <itenr FROMt WHERE <where_exp>)

If returning NULL correctly would make sense, the above will become:

(SELECT 1 FROM t
VWHERE
<wher e_exp> and
(Itemref(<cached_Il eft_expression>)=<itens or
<ltenr is null)
HAVING Itemis_not_null _test(<itenp))

When subquery is marked as the top item of the WHERE clause, it will become:
(SELECT 1 FROM t

VHERE
<wher e_exp> and

74

How MySQL Transforms Subqueries

Itemref(<cached | eft_expression>)=<itenp)

o Example2:
<l eft _expression> I N (SELECT <itenr FROM t

HAVI NG <havi ng_expr >
ORDER BY 1)

will be represented as
(SELECT <itenr as ref _null _hel per FROM t

HAVI NG <havi ng_exp> AND
Itemref(<cached_ | eft_expression>) = Itemref_null _helper(item)

 Example3:
<l eft _expression> IN (SELECT <itenr UNTON ...)

will become

(SELECT 1
HAVI NG | tem ref (<cached_| eft _expressi on>) =
<ltem nul | _hel per(<Itenp)>

UNION ...)

(HAVI NG without FROMis a syntax error, but a HAVI NG condition is checked even for subquery
without FROM)

» Example4:

<l eft_expression> IN (select <itenp)
will be completely replaced with<l ef t _expressi on> = <itenp

Now conditions (WHERE (a) or HAVI NG (b)) will be changed, depending on the select, in the
following way:

If subquery contains a HAVI NG clause, SUM) function or GROUP BY (example 1), then the item list
will be unchanged and | t em r ef _nul | _hel per reference will be created on item list element. A
condition will be added to the HAVI NG

If the subquery does not contain HAVI NG, SUM) function or GROUP BY (example 2), then:

e itemli st will bereplaced with 1.

 left_expression cache> = <itenr or is null <iten> will be added to the
WHERE clause and a specia i s_not _nul | (i tem) will be added to the HAVI NG, so null values
will be registered. If returning NULL wouldn't make correct sense, then only | ef t _expr essi on
cache> = <itenp will be added to the WHERE clause. If this subquery does not contain a FROM
clause or if the subquery contains UNI ON (example 3), then | eft _expressi on cache> =
Item nul | _hel per(<iten) will beadded to the HAVI NG clause.

75

How MySQL Transforms Subqueries

A single select without a FROM clause will be reduced to just <l ef t _expressi on> = <itenp
without useof | tem i n_opti m zer.

6.1.2. Row | NSubquery

To rewrite a row I'N subquery, the method used is
Item.in_subsel ect::row val ue_transforner. It works in amost the same way as the
scalar analog, but works with | t em cache_r ow for caching left expression and uses references for
elements of Item cache_row. To refer to item list it uses
Itemref _null _hel per(ref_array+i).

Subquery with HAVI NG, SUM) function, or GROUP BY will transformed in the following way:

RONIL, 2, ... IN IN(SELECT il, i2, ... iNFROMt HAVI NG <havi ng_expr>)
will become:
(SELECT i1, i2, ... iNFROMt

HAVI NG <havi ng_expr > and
<cache |0> = <Itemref _null _hel per(ref_array[0] > AND
<cache | 1> = <Itemref _null _hel per(ref_array[1])> AND

'<'céche_l N-1> = <Itemref _null _hel per(ref_array[N 1] >)

SELECT without FROMwill be transformed in this way, too.

It will be the same for other subqueries, except for the WHERE clause.

6.2. Item al | any subsel ect

Item al | any_subsel ect is inherited from |Item i n_subsel ect. ALL/ANY/SOVE use the
same algorithm (and the same method of It em i n_subsel ect) as scalar | N, but use a different
function instead of =.

ANY/SOVE use the same function that was listed after the left expression.

ALL uses an inverted function, and al subqueries passed as arguments to | t em f unc_not _al |
(Item func_not _al | isaspecia NOT function used in optimization, see following).

But before above transformation ability of independent ALL/ANY/SOVE optimization will be checked
(query is independent, operation is one of <, =<, >, >=, returning correct NULL have no sense (top level
of WHERE clause) and it is not row subquery).

For such queries, the following transformation can be done:

val > ALL (SELECT...) -> val > MAX (SELECT...
val < ALL (SELECT...) -> val < MN (SELECT...
val > ANY (SELECT...) -> val > MN (SELECT...
val < ANY (SELECT...) -> val < MAX (SELECT...

val >= ALL (SELECT...
val <= ALL (SELECT...
val >= ANY (SELECT...
val <= ANY (SELECT...

-> val >= MAX (SELECT.. .
-> val <= MN (SELECT. ..
-> val >= MN (SELECT. ..
-> val <= MAX (SELECT...

N e e e e e
N e e e e e

ALL subqueries already have NOT before them. This problem can be solved with help of special NOT,
which can bring 'top' tag to its argument and correctly process NULL if it is'top' item (return TRUE if

76

6.3.

How MySQL Transforms Subqueries

argument isNULL if it is'top' item). Let's call this operation _NOT_. Then we will have following table
of transformation:

val > ALL (SELECT...) -> _NOT_ val >= MAX (SELECT...)
val < ALL (SELECT...) -> _NOT_ val <= M N (SELECT...)
val > ANY (SELECT...) -> val < MN (SELECT...)
val < ANY (SELECT...) -> val > MAX (SELECT...)
val >= ALL (SELECT...) -> NOT_ val > MAX (SELECT...)
val <= ALL (SELECT...) -> NOT_val < MN (SELECT...)
val >= ANY (SELECT...) -> val <= M N (SELECT...)
val <= ANY (SELECT...) -> val >= MAX (SELECT...)

If subquery does not contain grouping and aggregate function, above subquery can be rewritten with
MAX() /M N() aggregate function, for example:

val > ANY (SELECT item...) -> val < (SELECT MN(item...)

For queries with aggregate function and/or grouping, specia |t em maxm n_subsel ect will be
used. This subquery will return maximum (minimum) value of result set.

| t em si ngl erow _subsel ect

It em si ngl er ow_subsel ect will be rewritten only if it contains no FROM clause, and it is not
part of UNI QN, and it is a scalar subquery. For now, there will be no conversion of subqueries with field
or reference on top of item list (on the one hand we can't change the name of such items, but on the other
hand we should assign to it the name of the whole subquery which will be reduced);

The following will not be reduced:

SELECT a;
SELECT 1 UNI ON SELECT 2;
SELECT 1 FROM t 1;

The following select will be reduced:

SELECT 1;
SELECT a+2;

Such a subquery will be completely replaced by its expression from item list and its SELECT _LEX and
SELECT _LEX_ UNI T will be removed from SELECT _LEX'stree.

Buteveryltem fiel dandltem ref of that expression will be marked for processing by a special
fix_fields() procedure. Thefix_fiel ds() procedures for such It ens will be performed in
the same way as for items of an inner subquery. Also, if this expression is I[tem fiel ds or
Item ref, then the name of this new item will be the same as the name of this item (but not
(SELECT .. .)). Thisisdoneto prevent broken references on such items from more inner subqueries.

77

Chapter 7. MySQL Client/Server
Protocol

7.1. Licensing Notice

The MySQL Protocol is proprietary.

The MySQL Protocoal is part of the MySQL Database Management System. As such, it falls under the
provisions of the GNU Public License (GPL). A copy of the GNU Public License is available on
MySQL 's web site, and in the product download.

Because thisisa GPL protocol, any product which usesit to connect to a MySQL server, or to emulate a
MySQL server, or to interpose between any client and server which uses the protocol, or for any similar
purpose, is also bound by the GPL. Therefore if you use this description to write a program, you must
release your program as GPL. Contact MySQL AB if you need clarification of these terms or if you
need to ask about aternative arrangements.

7.2. Organization

Thetopicis: the contents of logical packetsin MySQL version 5.0 client/server communication.

The description is of logical packets. There will be only passing mention of non-logical considerations,
such as physical packets, transport, buffering, and compression. If you are interested in those topics, you
may wish to consult another document: "MySQL Client - Server Protocol Documentation” in the file
net doc. t xt inthei nt er nal s directory of thenysql doc MySQL documentation repository.

The description is of the version-5.0 protocol at the time of writing. Most of the examples show version-
4.1 tests, which is okay because the changes from version-4.1 to version-5.0 were small.

A typical description of apacket will include:

"Bytes and Names'. Thisisintended as a quick summary of the lengths and identifiers for every field in
the packet, in order of appearance. The "Bytes"' column contains the length in bytes. The Names column
contains names which are taken from the MySQL source code whenever possible. If the version-4.0 and
version-4.1 formats differ significantly, we will show both formats.

Descriptions for each field. This contains text notes about the usage and possible contents.

(If necessary) notes about alternative terms. Naming in this document is not authoritative and you will
often see different words used for the same things, in other documents.

(If necessary) references to program or header files in the MySQL source code. An example of such a
reference is. sgl/protocol.cc net_store length() which means "in the sgl subdirectory, in the protocol.cc
file, the function named net_store length".

An Example. All examples have three columns:

-- the field nane

-- a hexadeci mal dunp
-- an ascii dunp, if the field has character data

All spaces and carriage returns in the hexadecimal dump are there for formatting purposes only.

78

MySQL Client/Server Protocol

In the later sections, related to prepared statements, the notes should be considered unreliable and there
are no examples.

7.3. Elements

Null-Terminated String: used for some variable-length character strings. The value \O' (sometimes writ-
ten 0x00) denotes the end of the string.

Length Coded Binary: a variable-length number. To compute the value of a Length Coded Binary, one
must examine the value of itsfirst byte.

Val ue O # OF Bytes Description
First Byte Fol | owi ng
0- 250 0 = value of first byte
251 0 col um val ue = NULL
only appropriate in a Row Data Packet
252 2 = value of followi ng 16-bit word
253 4 = value of followi ng 32-bit word
254 8 = value of follow ng 64-bit word

Thus the length of a Length Coded Binary, including the first byte, will vary from 1 to 9 bytes. The rel-
evant MySQL source program is sgl/protocol.cc net_store length().

All numbers are stored with |east significants byte first. All nhumbers are unsigned.

Length Coded String: a variable-length string. Used instead of Null-Terminated String, especialy for
character strings which might contain \O' or might be very long. The first part of a Length Coded String
is a Length Coded Binary number (the length); the second part of a Length Coded String is the actual
data. An example of a short Length Coded String is these three hexadecimal bytes: 02 61 62, which
means "length = 2, contents = "ab™’.

7.4. The Packet Header

Byt es Name
3 Packet Length
1 Packet Number

Packet Length: The length, in bytes, of the packet
that follows the Packet Header. There
may be some special values in the npst
significant byte. Since 2**24 = 16MB,
t he maxi num packet |ength is 16MB.

Packet Number: A serial nunber which can be used to
ensure that all packets are present
and in order. The first packet of a
client query wll
have Packet Number = 0. Thus, when a
new SQL statenent starts, the packet
nunber is re-initialised.

The Packet Header will not be shown in the descriptions of packets that follow this section. Think of it
as awaysthere. But logicaly, it "precedes the packet" rather than "isincluded in the packet”.

Alternative terms. Packet Length is also called "packetsize". Packet Number is also called "Packet no".

79

MySQL Client/Server Protocol

Rel evant MySQL Source Code:
i ncl ude/ gl obal . h int3store()
sql/net _serv.cc ny_net_wite(), net_flush(), net_wite_comuand(), ny_net_read()

7.5. Packet Types

Thisiswhat happensin atypical session:
The Handshake (when client connects):
Server Sends To Cient: Handshake Initialisation Packet
Cient Sends To Server: Cient Authentication Packet
Server Sends To Client: OK Packet, or Error Packet
The Commands (for every action the client wants the server to do):
Cient Sends To Server: Conmand Packet

Server Sends To Client: OK Packet, or Error Packet, or Result Set Packet

In the rest of this chapter, you will find a description for each packet type, in separate sections.

Alternative terms. The Handshakeis also called "client login" or "login procedure” or "connecting".

7.6. Handshake Initialization Packet

From server to client during initial handshake.

Byt es Name
pr ot ocol _version

(Nul'l -Term nated String) server_version
thread id
scranbl e_buf f
(filler) always 0x00
server_capabilities
server _| anguage
server_status

3 (filler) always 0x00 ..

PNFPNRFROR~S

pr ot ocol _versi on: The server takes this from PROTOCOL_VERSI ON
in /include/ nysql _version.h. Exanmple value = 10.

server_version: The server takes this from MYSQL_SERVER VERSI ON
in /include/nysql _version.h. Exanple value = "4.1.1-al pha".

t hr ead_nunber: I D of the server thread for this connection.

scranbl e_buf f: The password mechani sm uses this.
(See "Password functions" section el sewhere in this docunent.

server_capabilities: CLIENT_XXX options. The possible flag values at tine of
writing (taken from include/ nmysql_com h):

CLI ENT_LONG PASSWORD 1 /* new nore secure passwords */

CLI ENT_FOUND ROA5 2 /* Found instead of affected rows */

CLI ENT_LONG FLAG 4 /* Get all colum flags */

CLI ENT_CONNECT W TH DB 8 /* One can specify db on connect */

80

MySQL Client/Server Protocol

CLI ENT_NO_SCHEMA 16 /* Don't all ow database.table.colum */

CLI ENT_COVPRESS 32 /* Can use conpression protocol */

CLI ENT_ODBC 64 /* COdbc client */

CLI ENT_LOCAL_FILES 128 /* Can use LOAD DATA LOCAL */

CLI ENT_| GNORE_SPACE 256 /* Ignore spaces before ' (' */

CLI ENT_PROTOCOL_41 512 /* New 4.1 protocol */

CLI ENT_I NTERACTI VE 1024 /* This is an interactive client */

CLI ENT_SSL 2048 /* Switch to SSL after handshake */
CLI ENT_I GNORE_SI GPI PE 4096 /* | GNORE si gpi pes */

CLI ENT_TRANSACTI ONS 8192 /* Cient knows about transactions */

CLI ENT_RESERVED 16384 /* AOd flag for 4.1 protocol */
CLI ENT_SECURE_CONNECTI ON 32768 /* New 4.1 authentication */

CLI ENT_MULTI _STATEMENTS 65536 /* Enabl e/disable multi-stm support */
CLI ENT_MULTI _RESULTS 131072 [/* Enable/disable nulti-results */

server _| anguage: current server character set nunber

server_status: SERVER STATUS xxx flags: e.g. SERVER STATUS AUTOCCOW T

Alternative terms. Handshake Initialization Packet is also called "greeting package". protocolversion is
also called "Prot. version”. server_version is also called "Server Version String”. thread _number is also
called "Thread Number". current server charset number is also called "charset_no". scramble_buff is
also caled "crypt seed". server_status is also called "SERVER_STATUS xxx flags' or "Server status
variables'.

Exanpl e Handshake Initialization Packet

Hexadeci mal ASCI
pr ot ocol _version Oa .
server _version 34 2e 31 2e 31 2d 71 6¢ 4.1.1-a
70 68 61 2d 64 65 62 75 pha- debu
67 00 g.
t hr ead_nunber 01 00 00 00 ce
scranbl e_buf f 3a 23 3d 4b 43 4a 2e 43
(filler) 00 .
server_capabilities 2c 82
server _| anguage 08
server_status 02 00 .
(filler) 00 00 00 00 00 00 OO OO

00 00 00 00 00

In the example, the server is telling the client that its server capabilities include CLI-
ENT_MULTI_RESULTS, CLIENT_SSL, CLIENT_COMPRESS, CLIENT _CONNECT WITH_DB,
CLIENT_FOUND_ROWS.

7.7. Client Authentication Packet

From client to server during initial handshake.

VERSI ON 4.0

Byt es Name
2 client_flags

3 max_packet _size

n (Null-Termnated String) user

8 scranbl e_buf f

1 (filler) always 0x00

VERSION 4.1

81

MySQL Client/Server Protocol

Byt es Name
4 client_flags
4 max_packet _size

1 char set _nunber

23 (filler) always 0x00...
n (Null-Terminated String) user

8 scranbl e_buff

1 (filler) always 0x00

n (Null-Term nated String) dat abasenane

client_flags: CLI ENT_xxx options. The list of possible flag
values is in the description of the Handshake
Initialisation Packet, for server_capabilities.
For some of the bits, the server passed "what
it's capable of". The client |eaves sone of the
bits on, adds others, and passes back to the server.
One inportant flag is: whether conpression is desired.

max_packet _si ze: t he maxi mum nunber of bytes in a packet for the client
char set _nunber: in the sane domain as the server_|anguage field that

the server passes in the Handshake Initialisation packet.
user: identification
scranbl e_buff: the password, after encrypting using the scranble_buff

contents passed by the server (see "Password functions"
section el sewhere in this docunent)

dat abasenane: nane of schema to use initially

The scramble_buff and databasename fields are optional .

Alternative terms. "Client authentication packet" is sometimes called "client auth response” or "client
auth packet". "Scramble_buff" is sometimes called "crypted password".

Rel evant MySQL Source Code:

- Onthe client side: libnysqgl/libmysqgl.c::nysql_real connect().
- On the server side: sql/sql_parse.cc::check_connections()

Exanpl e Client Authentication Packet

Hexadeci nmal ASCl |
client _flags 85 a6 03 00
max_packet _si ze 00 00 00 01
char set _nunber 08 .
(filler) 00 00 00 00 00 OO0 OO OO

00 00 00 00 00 00 00 OO
00 00 00 00 OO 00 OO

user 70 67 75 6¢c 75 74 7a 61 pgul ut za
6e 00 n.

7.8. Password functions

The Server Initialization Packet and the Client Authentication Packet both have an 8-byte field,
scramble_buff. The value in thisfield is used for password authentication. It works thus:

The server sends a randomstring to the client, in scranble_buff.

82

MySQL Client/Server Protocol

The client encrypts the scranble_buff value using the password that the user
enters. This happens in sqgl/password. c:scranble() function.
The client sends the encrypted scranble buff value to the server.

The server encrypts the original
nysql . user . Passwor d.

dat abase,

random string using a value in the nysql

The server conpares its encryted randomstring to what the client sent

in scranble buff.

If they are the sane, the password is okay.

Rel evant MySQL Source Code:
i bnysqgl / password.c coments at start of file.

7.9. Command Packet

From client to server whenever the client wants the server to do something.

Byt es Name
1 conmmand
n arg
conmand: The nost conmmon value is 03 COM QUERY, because
| NSERT UPDATE DELETE SELECT etc. have this code.
The possible values at time of witing (taken
from/include/ nysql_comh for enum server_ comand) are:
Nare Associ ated client function
0x00 COM SLEEP (default, e.g. SHOW PROCESSLI ST)
0x01 COM QU T nysqgl _cl ose
0x02 COM I NI T_DB nysqgl _sel ect _db
0x03 COM_QUERY nysqgl _real query
0x04 COM _FI ELD_LI ST nysql _list_fields
0x05 COM CREATE_DB nysql create_db
0x06 COM DROP_DB nysqgl _drop_db
0x07 COM_REFRESH nysqgl _refresh
0x08 COM_SHUTDOWN
0x09 COM _STATI STI CS nysql _st at
Ox0a COM_PROCESS | NFO nysqgl _|ist_processes
0x0b COM_CONNECT (during authenticati on handshake)
0x0c COM_PROCESS_KI LL nysql _kill
0x0d COM _DEBUG
0x0e COM_PI NG nysql _pi ng
OxOf COM_TI ME (special value for slow | ogs?)
0x10 COM DELAYED | NSERT
0x11 COM _CHANGE_USER nysqgl _change_user
0x12 COM BI NLOG_DuwP (used by slave server / mysqgl bi nl og)
0x13 COM TABLE_DUMP (used by slave server to get master table
0x14 COM_CONNECT_QUT (used by slave to | og connection to naste
0x15 COM REAQ STER SLAVE (reports slave location to nmaster)
0x16 COM_STMI_PREPARE see description of Prepare Packet
0x17 COM_STMI_ EXECUTE see description of Execute Packet
0x18 COM _STMI_SEND LONG DATA see description of Long Data Pa
0x19 COM _STMTI_CLGOSE new, for closing statenent
Oxla COM STMI_RESET
0x1b COM _SET_OPTI ON
Ox1c COM_STMI_FETCH
arg: The text of the command is just the way the user typed it, there is

83

7.10

7.11

MySQL Client/Server Protocol

by the client (except renmoval of the final ';').
This field is not a null-term nated string; however,
the size can be calculated fromthe packet size,
and the MySQL client appends '\0' when receiving.

Rel evant MySQL source code:
sqgl -conmmon/client.c cli_advanced_conmand(), nysql _send_query().
libmysgl/1ibnysql.c nysql _real _query(), sinple_command(), net _field_length().

Exanpl e Command Packet

Hexadeci mal ASCI |
conmand 02 .
arg 74 65 73 74 t est

In the example, the value 02 in the command field stands for COM_INIT_DB. Thisis the packet that the
client putstogether for "use test;".

Types Of Result Packets

A "result packet" is a packet that goes from the server to the client in response to a Client Authentication
Packet or Command Packet. To distinguish between the types of result packets, a client must look at the
first byte in the packet. We will call this byte "field_count” in the description of each individua pack-
age, although it goes by several names.

Type O Result Packet Hexadeci mal Value OF First Byte (field_count)
K Packet 00

Error Packet ff

Result Set Packet 1-250 (first byte of Length-Coded Bi nary)

Fi el d Packet 1-250 ("")

Row Dat a Packet 1-250 ("")

ECF Packet fe

OK Packet

From server to client in response to command, if no error and no result set.

VERSI ON 4.0

Byt es Name

1 (Lengt h Coded Bi nary) field_count, always = 0
1-9 (Length Coded Bi nary) af fected_rows

1-9 (Length Coded Bi nary) insert_id

2 server_status

n (Lengt h Coded String) nessage

VERSION 4. 1

Byt es Name

1 (Lengt h Coded Bi nary) field count, always = 0
1-9 (Length Coded Binary) af fected_rows

1-9 (Length Coded Bi nary) insert_id

2 server_status

2 war ni ng_count

84

MySQL Client/Server Protocol

n (Lengt h Coded String) nessage

field_count: always = 0
af f ect ed_r ows: = nunber of rows affected by | NSERT/ UPDATE/ DELETE
i nsert _id: This will have the "last INSERT id", that is, the value

that an auto_increment columm received in the | ast | NSERT.
= 0 if "last INSERT id" was not changed by the command.

server_stat us: = 0, usually. The client can use this to check if the
conmand was inside a transaction.

war ni ng_count : nunber of warni ngs

nessage: For exanple, after a multi-line | NSERT, nessage might be

"Records: 3 Duplicates: 0 Warnings: 0"

The message field is optional .

Alternative terms. OK Packet is also known as "okay packet" or "ok packet" or "OK-Packet".
field_count is aso known as "number of rows" or "marker for ok packet". message is also known as
"Messagetext". OK Packets (and result set packets) are also called "Result packets'.

Rel evant files in MySQ. source:

(client) sql/client.c mysql _read query result()
(server) sql/protocol.cc send_ok()

Exampl e OK Packet

Hexadeci mal ASCI |
fiel d_count 00
af fected rows 01
insert _id 00
server_status 02 00
war ni ng_count 00 00

In the example, the optional message field is missing (the client can determine this by examining the
packet length). This is a packet that the server returns after a successful INSERT of a single row that
contains no auto_increment columns.

Error Packet

From server to client in response to command, if error.

7.12

VERSI ON 4.0

Byt es Name

1 field_count, always = Oxff
2 errno

n nessage

VERSI ON 4. 1

Byt es Name

1 field count, always = Oxff
2 errno

1 (sql state nmarker), always '#
5 sqgl state

85

7.13

MySQL Client/Server Protocol

n nessage
field count: Al ways Oxff (255 decinal).
errno: The possible values are listed in the manual, and in

the MySQ. source code file /include/ nysqld_error. h.

(sqlstate nmarker): This is always '"#' . It is necessary for distinguishing
version-4.1 nessages.

sgl state: The server translates errno values to sql state val ues
with a function naned mysqgl _errno_to_sqgl state(). The
possi bl e values are listed in the manual, and in the
MySQ. source code file file /include/sqgl_state.h.

nessage: The error nmessage is a string which ends at the end of
t he packet, that is, its length can be determined from
t he packet header. The MySQL client (in the my_net read()
function) always adds '\0' to a packet, so the nessage
may appear to be a Null-Term nated String.
Expect the nessage to be between 0 and 512 bytes | ong.

Alternative terms: field_count is also known as "Status code" or "Error Packet marker". errno is also
known as "Error Number" or "Error Code".
Relevant filesin MySQL source: (client) client.c net_safe read() (server) sgl/protocol.cc send_error()

Exampl e of Error Packet

Hexadeci mal ASCl
fiel d_count ff
errno 1b 04
(sql state narker) 23 #
sqgl state 34 32 53 30 32 42502
nessage 55 63 6b 6e 6f 77 6e 20 Unknown
74 61 62 6¢c 6C 65 20 27 tabl e
71 27 q'

Result Set Header Packet

From server to client after command, if no error and result set -- that is, if the command was a query
which returned aresult set.

The Result Set Header Packet isthe first of several, possibly many, packets that the server sends for res-
ult sets. The order of packetsfor aresult setis:

(Result Set Header Packet) the nunber of col ums

(Fi eld Packets) col umm descriptors

(EOF Packet) mar ker: end of Field Packets

(Row Dat a Packet s) row contents

(End Packet) mar ker: end of Data Packets
Byt es Name

1-9 (Lengt h- Coded-Bi nary) field_count
1-9 (Lengt h- Coded-Bi nary) extra

field_count: See the section "Types O Result Packets”
to see how one can distinguish the

86

MySQL Client/Server Protocol

first byte of field_count fromthe first
byte of an OK Packet, or other packet types.

extra: For exanple, SHOW COLUWNS uses this to send
t he nunber of rows in the table.

The"extra’ field is optional and never appears for ordinary result sets.

Alternative terms: a Result Set Packet is also called "a result packet for a command returning rows" or
"afield description packet".

Rel evant MySQL source code:
libmysgl/libnysqgl.c (client):
nysqgl _store_result() Read a result set fromthe server to nmenory
nysqgl _use_result () Read a result set row by row fromthe server.
See also ny_net_wite() which describes |ocal data | oading.

Exanpl e of Result Set Header Packet
Hexadeci mal ASCl |

field _count 03

In the example, we se what the packet would contain after "SELECT * FROM t7" if table t7 has 3
columns.

Field Packet

From Server To Client, part of Result Set Packets. One for each column in the result set. Thus, if the
value of field_columnsin the Result Set Header Packet is 3, then the Field Packet occurs 3 times.

7.14

VERSI ON 4.0

Byt es Name
n (Length Coded String) tabl e

n (Length Coded String) nane

4 (Length Coded Binary) | ength

2 (Length Coded Binary) type

2 (Lengt h Coded Binary) fl ags

1 deci mal s
n (Length Coded Binary) def aul t

VERSI ON 4.1

Byt es Name

n (Length Coded String) cat al og

n (Length Coded String) db

n (Length Coded String) tabl e

n (Length Coded String) org_table
n (Length Coded String) name

n (Length Coded String) org_nane
1 (filler)
2 char set nr
4 ength

1 type

2 flags

1 deci mal s
2 (filler), always 0x00
n (Length Coded Bi nary) def aul t

87

MySQL Client/Server Protocol

In practice, since identifiers are almost always 250 bytes or shorter, the Length Coded Strings look like:

(1 byte for length of data) (data)

cat al og:
db:

t abl e:
org_table:
name:

or g_nane:
charsetnr:
| engt h:

t ype:

fl ags:

deci mal s:

Catal og, for version 5.0 use. The value nowis "std".
Dat abase identifier, also known as schena nane.

Table identifier, after AS clause (if any).

Oiginal table identifier, before AS clause (if any).
Colum identifier, after AS clause (if any).
Colum identifier, before AS clause (if any).

Char acter set nunber.

Length of colum, according to the definition.
Al so known as "display |length". The val ue given

here nmay be larger than the actual |ength,
exanpl e an instance of a VARCHAR(2) columm
have only 1 character in it.

for

may

The code for the colum's data type. Al so known as
"enumfield type". The possible values at tinme of

witing (taken from include/ nysql _comh),
0x00 FI ELD _TYPE_DECI VAL
0x01 FlI ELD_TYPE_TI NY

0x02 Fl ELD_TYPE_SHORT
0x03 FI ELD_TYPE_LONG

0x04 FIELD TYPE FLOAT
0x05 Fl ELD_TYPE_DOUBLE
0x06 FI ELD TYPE NULL

0x07 FI ELD TYPE Tl MESTAMP
0x08 FI ELD_TYPE_LONGLONG
0x09 FI ELD TYPE_I NT24
O0x0a FIELD TYPE_DATE

0x0b FI ELD_TYPE_TI ME

0x0c FI ELD_TYPE_DATETI ME
0x0d FlI ELD_TYPE_YEAR

0x0e Fl ELD_TYPE_NEWDATE

i n hexadeci mal

0x0f FIELD_TYPE_VARCHAR (new in MySQL 5.0)

0x10 FIELD TYPE BIT (newin MySQ 5. 0)

Oxf 6 FI ELD_TYPE_NEWDECI MAL (new in MYSQ. 5. 0)

0xf7 FlELD_TYPE_ENUM

oxf8 FlELD TYPE_SET

0xf9 FIELD TYPE_TI NY_BLOB
oxfa FIELD TYPE_MEDI UM BLOB
oxfb FI ELD_TYPE_LONG BLOB
oxfc FIELD _TYPE_BLOB

oxfd FI ELD_TYPE_VAR STRI NG
oxfe FIELD _TYPE_STRING

oxff FI ELD_TYPE_GEOVETRY

The possible flag values at tinme of
witing (taken from include/nysqgl_comh),
0001 NOT_NULL_FLAG

0002 PRI _KEY_FLAG

0004 UNI QUE_KEY_FLAG

0008 MULTI PLE_KEY_FLAG

0010 BLOB_FLAG

0020 UNSI GNED_FLAG

0040 ZEROFI LL_FLAG

0080 BI NARY_FLAG

0100 ENUM FLAG

0200 AUTO | NCREMENT_FLAG

0400 TI MESTAMP_FLAG

0800 SET_FLAG

The nunber of positions after the decinmal
point if the type is DECI MAL or NUMERI C
Al so known as "scal e".

i n hexadeci mal

88

MySQL Client/Server Protocol

defaul t: For table definitions. Doesn't occur for
normal result sets. See nysql _list_fields().

Alternative Terms. Field Packets are also called "Header Info Packets' or "field descriptor packets"
(that's a better term but it's rarely used). In non-MySQL contexts Field Packets are more commonly
known as "Result Set Metadata’.

Rel evant MySQL source code:
(client) client/client.c unpack_fields().
(server) sql/sqgl _base.cc send_fields().

Exanpl e of Field Packet

Hexadeci nmal ASCI
cat al og 03 73 74 64 .std
db 03 64 62 31 .dbl
tabl e 02 54 37 L T7
org_table 02 74 37 17
name 02 53 31 . S1
or g_name 02 73 31 .sl
(filler) Oc .
char set nr 08 00
 ength 01 00 00 00
type fe
fl ags 00 00
deci mal s 00
(filler) 00 00

In the example, we see what the server returns for "SELECT s1 AS S1 FROM t7 AS T7" where column
sl isdefined as CHAR(D).

7.15. EOF Packet

From Server To Client, at the end of a series of Field Packets, and at the end of a series of Data Packets.
With prepared statements, EOF Packet can also end parameter information, which we'll describe later.

VERSI ON 4.0

Byt es Name

1 field count, always = Oxfe

VERSI ON 4.1

Byt es Name

1 field_count, always = Oxfe

2 war ni ng_count

2 Status Fl ags

field count: The value is always Oxfe (deci nal 254).
However ... recall (fromthe
section "El ements", above) that the val ue 254 can begin
a Lengt h- Encoded- Bi nary val ue which contains an 8-byte
integer. So, to ensure that a packet is really an ECF
Packet: (a) check that first byte in packet = Oxfe, (D)
check that size of packet < 9.

war ni ng_count : Nunber of warnings. Sent after all data has been sent

to the client.

89

MySQL Client/Server Protocol

server_stat us:

Contains flags |ike SERVER STATUS MORE RESULTS.

Alternative terms;. EOF Packet is also known as "L ast Data Packet" or "End Packet".

Rel evant MySQL source code:
(server) protocol.cc send_eof ()

Exanmpl e of ECOF Packet

fiel d_count
war ni ng_count
server_status

Hexadeci mal ASCI |
fe

00 00

00 00

7.16. Row Data Packet

From server to client. One packet for each row in the result set.

Byt es Name

n (Length Coded String) (columm val ue)

(col umm val ue): The data in the colum, as a character string.
If a colum is defined as non-character, the
server converts the value into a character
before sending it. Since the value is a Length
Coded String, a NULL can be represented with a
singl e byte containing 251(see the description

of Length Coded Strings in section "El enments" above).

The (column value) fields occur multiple times. All (column value) fields are in one packet. There is no
space between each (column value).
Alternative Terms. Row Data Packets are also called "Row Packets" or "Data Packets'.

Rel evant MySQL source code:
(client) client/client.c read_rows

Exanpl e of Row Data Packet

Hexadeci nmal ASCI |
(first colum) 01 58 . X
(second col um) 02 35 35 55

In the example, we see what the packet contains after a SELECT from atable defined as "(s1 CHAR, s2
INTEGER)" and containing one row where s1='X" and s2=55.

7.17. Row Data Packet: Binary (Tentative De-
scription)

From server to client, or from client to server (if the client has a prepared statement, the "result set"
packet format is used for transferring parameter descriptors and parameter data).

90

MySQL Client/Server Protocol

Recall that in the description of Row Data we said that: "If a column is defined as non-character, the
server converts the value into a character before sending it." That doesn't have to be true. If it isn't true,
it'saRow Data Packet: Binary.

Byt es Nane

1 Null Bit Map with first two bits = 01
n (Length Coded String) (columm val ue)

Byt es Name

? Packet Header

1 Null Bit Map with first two bits = 01

Null Bit Map: The nost significant 2 bits are reserved. Since
there is always one bit on and one bit off, this can't be
confused with the first byte of an Error Packet (255), the
first byte of a Last Data Packet (254), or the first byte of
an K Packet (0).

(columm val ue): The columm order and organi zation are the sane as for
conventional Row Data Packets. The difference is that
each colum value is sent just as it is stored. It's now up
to the client to convert nunbers to strings if that's desirable.
For a description of colum storage, see "Physical Attributes O
Col ums" el sewhere in this documnent.

Only non-zero parameters are passed.

Because no conversion takes place, fixed-length data items are as described in the "Physical Attributes
of Columns' section: one byte for TINYINT, two bytes for FLOAT, four bytes for FLOAT, etc. Strings
will appear as packed-string-length plus string value. DATETIME, DATE and TIME will be asfollows:

Type Size Coment
dat e 1+ 0-11 Length + 2 byte year, 1 byte MVDDHHMVSES
4 byte billionth of a second
datetine 1+ 0-11 Length + 2 byte year, 1 byte MVDDHHMVBES
4 byte billionth of a second
tinme 1+ 0-11 Length + sign (0 = pos, 1= neg), 4 byte days,

1 byte HHWDD, 4 byte billionth of a second

Alternative Terms. Row Data Packet: Binary is also called "Binary result set packet".

Except for the different way of signalling NULLS, the server/client parameter interaction here proceeds
the say way that the server sends result set data to the client. Since the data is not sent as a string, the
length and meaning depend on the data type. The client must make appropriate conversions given its
knowledge of the data type.

7.18. Prepared Statement Initialization Packet
(Tentative Description)

From server to client, when a statement is being sent with the COM_PREPARE command.

Byt es Nane

1 field count

91

MySQL Client/Server Protocol

4 statenment _handler _id

2 col ums

2 paraneters

field_count: Always = 0, as with OK Packet.

statement _handler _id: 1D of statement handler.
col ums: Nurmber of colums in result set.
par anet ers: Nunber of parameters in query.

Alternative terms. statement_handler_id is called "statement handle" or "hstmt" everywhere but at
MySQL . Prepraed statement initialization packet is also called "prepared statement init packet".

7.19. OK for Prepared Statement Initialization
Packet (Tentative Description)

From server to client, in response to prepared statement initialization packet.

Byt es Nane

1 0 - marker for OK packet

4 statenent _handler_id

2 nunmber of colums in result set
2 nunber of paraneters in query

7.20. Parameter Packet (Tentative Description)

From server to client, for prepared statements which contain parameters.

The Parameter Packets follow a Prepared Statement Initialization Packet which has a positive value in
the parametersfield.

Byt es Name

2 type

2 fl ags

1 deci mal s

4 [engt h

type: Sane as for type field in a Field Packet.

fl ags: Sane as for flags field in a Field Packet.
deci mal s: Sane as for decimals field in a Field Packet.
| engt h: Sarme as for length field in a Field Packet.

Notice the similarity to a Field Packet.

The parameter data will be sent in a packet with the same format as Row Data Packet: Binary.

7.21. Long Data Packet (Tentative Description)

92

7.22

MySQL Client/Server Protocol

From client to server, for long parameter values.

Byt es Name

4 statement _handler _id

2 par amet er _numnber

2 type

n dat a

stat enment _handl er i d: I D of statenent handl er

par armet er _numnber : Par armet er nunber

type: Paranmeter data type. Not used at tinme of witing
dat a: Val ue of paraneter, as a string.

The I ength of the data can be conputed from
t he packet |ength

This is used by mysgl_send long data() to set any parameter to a string value. One can call
mysgl_send_long_data() multiple times for the same parameter; The server will concatenate the results
to one big string.

The server will not require an end packet for the string. mysgl_send long_data() is responsible for up-
dating a flag that all data has been sent (that is, that the last call to mysgl_send long_data() has the
'last_data flag set).

The server will not send an @code{ ok} or @code{ error} packet in response to this. If there is an error
(for example the string is too big), one will see the error when calling "execute".

Rel evant MySQL Sour ce Code:
(server) nysql _send_| ong_data

Execute Packet (Tentative Description)

From client to server, to execute a prepared statement.

Byt es Name

1 code

4 statenment id

1 fl ags

4 iteration_count

(param count +7)/ 8 nul |l _bit_map

1 new par amet er _bound_fl ag
n type

code al ways COM EXECUTE

statenment _id: stateneent identifier
fl ags: reserved for future use.

in MySQL 4.0, always O.

used in MySQ 5.0 for "open cursor".
iteration_count: reserved for future use. in MySQ 4.1, always 1.

null _bit_map: A map of bits which are null / not null, one for
each paraneter. The first two bits are reserved so as to

93

7.23

MySQL Client/Server Protocol

avoi d confusion with other packet types. For exanple, if
the first paraneter (paraneter 0) is NULL, then
the least significant bit in null_bit_mp will be 1.

new_par anet er _bound_f 1 ag: Contains 1 if this is the first tine
t hat "execute" has been called, or if
t he paraneter has been rebound.

type: Cccurs once for each paraneter that
is described as NOT NULL. The high
15 bits of the | ow byte-first number
are the type, then there is one bit which
is set to on for "unsigned". This is not
used with nysql _send_| ong_data().

The Execute Packet is also known as"COM_EXECUTE Packet”.

In response to an Execute Packet, the server should send back one of: an OK Packet, an Error Packet, or
aseries of Result Set Packets in which all the Row Data Packets are binary.

Relevant MySQL Source Code: libmysal/libmysgl.c cli_read prepare result()

Compression

This chapter does not discuss compression, but you should be aware of its existence.

Compression is of one or more logical packets. The packet_number field that isin each packet header is
an aid for keeping track.

The opposite of "compressed” is"raw".

Compression is used if both client and server support zlib compression, and the client requests compres-
sion.

A compressed packet header is: packet length (3 bytes), packet number (1 byte), and Uncompressed
Packet Length (3 bytes). The Uncompressed Packet Length is the number of bytes in the original, un-
compressed packet. If thisis zero then the datais not compressed.

When the compressed protocol isin use (that is, when the client has requested it by setting the flag bit in
the Client Authentication Packet and the server has accepted it), either the client or the server may com-
press packets. However, compression will not occur if the compressed length is greater than the original
length. Thus, some packets will be compressed while other packets are not compressed.

94

Chapter 8. Replication

This chapter describes MySQL replication principles and code, asitisin version 4.1.1.

MySQL replication works like this: Every time the master executes a query that updates data (UPDATE,
| NSERT, DELETE, etc.), it packs this query into an event, which consists of the query plus a few bytes
of information (timestamp, thread id of the thread which issued the query etc., defined later in this
chapter). Then the master writes this event to afile (the “binary log”). When the dave is connected, the
master re-reads its binary log and sends the events to the slaves. The slave unpacks the event and ex-

ecutes the query.

8.1. Main Code Files

Thesefileareall inthesql directory:

* | 0g. cc: creating/writing/deleting a binlog.
* | og_event. *:dl event types and their methods.

sl ave. *: dl the dave threads code.

sql _repl.*: al SQL commands related to replication (START SLAVE, CHANGE MASTER
TO). Also al the master's high-level code about replication (binlog sending, ak.a
COM Bl NLOG_DUMP). For example, binlog sending code isin sql _r epl . cc, but uses low-level
commands (single event reading) which areinl og_event . cc.

repl _fail safe.*: unfinished code about failsafe (master election if the primary master fails).
Thisfile will probably be heavily reworked. Presently it's almost unused.

8.2. The Binary Log

When started with - - | og- bi n, mysql d creates a binary log (“binlog”) of all updates. Only updates
that really change the data are written (a DELETE issued on an empty table won't be written to the bin-
ary log). Every query iswritten in a packed form: an event. The binary log is a sequence of events. The
nysqgl bi nl og utility can be used to print human-readable data from the binary log.

[gui | hem@bi chot2 1] $ mysql bi nl og ghi chot 2- bi n. 005

at 4

#030710 21:55:35 server id 1 1log_pos 4
at 79

#030710 21:55:59 server id 1 1o0g _pos 79
SET TI MESTAMP=1057866959;

drop dat abase test;

at 128

#030710 21:56: 20 server id 1 1o0g pos 128
SET TI MESTAMP=1057866980;

create database test;

at 179

#030710 21:57:00 server id 1 1og _pos 179
use test;

SET TI MESTAMP=1057867020;

create table u(a int primary key, b int,
at 295

#030710 21:57:19 server id 1 1o0g pos 295
SET TI MESTAMP=1057867039;

binlog v 3, server v 4.0.14

t hread_i d=2 exec_tine=

t hread_i d=2 exec_tine=

thread_i d=2 exec_tine=

foreign key (b) references u(a));

t hread_i d=2 exec_tine=

95

Replication

drop table u;
at 342

#030710 21:57:24 server id 1 log_

SET TI MESTAMP=1057867044;
create table u(a int primry key,
at 470

#030710 21:57:52 server id 1 log_

SET TI MESTAMP=1057867072;
insert into u val ues(4, NULL);
at 533

#030710 21:57:59 server id 1 log_

SET TI MESTAMP=1057867079;
insert into u values(3,4);
at 593

#030710 21:58:34 server id 1 log_

SET Tl MESTAMP=1057867114;
delete from u;
at 641

#030710 21:58:57 server id 1 log_

SET TI MESTAMP=1057867137;
drop table u;
at 688

#030710 21:59:18 server id 1 log_

SET TI MESTAMP=1057867158;

pos 342

b int, key(b),

pos 470

pos 533

pos 593

pos 641

pos 688

create table v(c int primary key) type=i nnodb

at 768

#030710 21:59:24 server id 1 log_

SET TI MESTAMP=1057867164;
create table u(a int primry key,
at 896

#030710 21:59:47 server id 1 log_

SET TI MESTAMP=1057867187,
DROP TABLE | F EXI STS u;
at 953

#030710 21:59:47 server id 1 log_

SET TI MESTAMP=1057867187;
CREATE TABLE u (
a int(11) NOT NULL default '0',
b int(11) default NULL,
PRI MARY KEY (a),
KEY b (b),

CONSTRAI NT “0_41" FOREI GN KEY (°

) TYPE=Il nnoDB
at 1170

#030710 21:59:47 server id 1 log_

SET TI MESTAMP=1057867187,
DROP TABLE | F EXI STS v,
at 1227

#030710 21:59:47 server id 1 log_

SET TI MESTAMP=1057867187;

CREATE TABLE v (
c int(11) NOT NULL default 'O0',
PRI MARY KEY (c)

) TYPE=Il nnoDB

at 1345

#030710 22:00: 06 server id 1 log_

SET TI MESTAMP=1057867206;
drop table u,v;
at 1394

#030710 22:00: 29 server id 1 log_

SET TI MESTAMP=1057867229;
create table v(c int primry key)
at 1474

#030710 22:00: 32 server id 1 log_

pos 768
b int, key(b),
pos 896

pos 953

Query

foreign key (b)

Query

Query

Query

Query

Query

Query

foreign key (b)

Query

Query

b) REFERENCES "V

pos 1170

pos 1227

pos 1345

pos 1394
t ype=i nnodb;
pos 1474

Query

Query

Query

Query

Query

thread_i d=2

t hread_i d=2

thread_i d=2

thread_i d=4

thread_i d=4

thread_ i d=4

thread_i d=4

t hread_i d=8

thread_i d=8

("c’)

t hread_i d=8

t hread_i d=8

t hread_i d=9

thread_ i d=13

t hread_i d=13

96

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

exec_ti

nme=

references u(a))

ne=

ne=

nme=

ne=

ne=

nme=

references v(c))

ne=

ne=

ne=

ne=

ne=

ne=

nme=

Replication

SET TI MESTAMP=1057867232,

create table u(a int primary key, b int, key(b), foreign key (b)

at 1602
#030710 22:00:44 server id 1 1og_pos 1602 Query
SET TI MESTAMP=1057867244;
drop table v, u;
at 1651
#030710 22:00:51 server id 1 |og pos 1651 Query
SET TI MESTAMP=1057867251;
CREATE TABLE v (
c int(11) NOT NULL default '0',
PRI MARY KEY (c)
) TYPE=I nnoDB;
at 1769
#030710 22:12:50 server id 1 1og _pos 1769 St op

Here are the possible types of events:

enum Log_event _type

t hread_i d=16

t hread_i d=16

START_EVENT = 1, QUERY_EVENT =2, STOP_EVENT=3, ROTATE_EVENT = 4,
| NTVAR_EVENT=5, LOAD_EVENT=6, SLAVE_EVENT=7, CREATE_FILE_EVENT=8,
APPEND BLOCK_EVENT=9, EXEC LOAD EVENT=10, DELETE_FI LE_EVENT=11,

NEW LOAD EVENT=12, RAND EVENT=13, USER VAR EVENT=14
b

enum | nt _event _type

b

« START_EVENT
Written when nysql d starts.

« STOP_EVENT
Written when mysql d stops.

« QUERY_EVENT
Written when an updating query is done.

« ROTATE_EVENT

{
I NVALI D_I NT_EVENT = 0, LAST_INSERT_ID _EVENT = 1, |NSERT_|D EVENT = 2

Written when mysql d switches to a new binary log (because someone issued FLUSH LOGS or the
current binary log's size becomes too large. The maximum size is determined as described in Sec-

tion 8.3.1, “The Slave I/O Thread”.
« CREATE_FI LE_EVENT

Written when aLOAD DATA | NFI LE statement starts.
« APPEND BLOCK_EVENT

Written for each loaded block.

 DELETE_FI LE_EVENT

97

references v(c))

exec_tine=

exec_tine=

Replication

Written if the load finally failed

« EXECUTE_LOAD EVENT
Written if the load finally succeeded.

* SLAVE_EVENT
Not used yet.

« | NTVAR_EVENT, RAND EVENT, USER VAR EVENT
Written every time a query or LOAD DATA used them. They are written together with the
QUERY_EVENT or the events written by the LOAD DATA | NFI LE. | NTVAR_EVENT is in fact
two types: | NSERT_| D_EVENT and LAST_| NSERT _| D_EVENT.

« I NSERT_| D_EVENT

Used to tell the slave the value that should be used for an aut o_i ncr enent column for the next
query.

« LAST_I NSERT_| D_EVENT

Used to tell the dave the value that should be used for the LAST | NSERT | D() function if the
next query usesit.

* RAND_EVENT
Used to tell the slave the value it should use for the RAND() function if the next query usesit.
* USER VAR EVENT

Used to tell the slave the value it should use for a user variable if the next query usesit.

The event'sformat is described in detail in Section 8.7, “ Replication Event Format in Detail”.

There is a C++ class for every type of event (cl ass Query_| og_event etc). Prototypes are in
sql /1 og_event . h. Code for methods of these classesisin| og_event . cc. Code to create, write,
rotate, or delete abinary logisinl og. cc.

8.3. Replication Threads

Every time replication is started on the slave mysql d, i.e. when mysql d is started with some replica-
tion options (- - mast er - host =t hi s_host name etc.) or some existing master.info and re-
I ay-1 og. i nf o files, or when the user does START SLAVE on the slave, two threads are created on
theslave, insl ave. cc:

extern "C' pthread_handl er _decl (handl e_sl ave_i o, arg)

{ ...}
extern "C' pthread_handl er _decl (handl e_sl ave_sql , arqg)
{ ...}

8.3.1. The Slave I/O Thread

98

Replication

The 1/O thread connects to the master using a user/password. When it has managed to connect, it asks
the master for its binary logs:

t hd->proc_info = "Requesting binlog dunmp";
if (request _dunp(mysql, m, &suppress_warni ngs))
Then it enters this loop:

\{Nhile ('io_slave killed(thd, m))

<cut >

t hd->proc_i nfo = "Readi ng naster update";

ul ong event len = read_event(nysqgl, m, &suppress_warnings);
<cut >

thd->proc_info = "Queueing event from master";

if (queue_event(m, (const char*)nysql->net.read_pos + 1,
event _| en))
{

sql _print_error("Slave 1/O thread could not queue event
frommaster");

goto err;
}
flush _naster _info(m);
if (m->rli.log_space limt & m->rli.log space |limt <
m->rli.log space total &&
Imi->rli.ignore_|log_space_limt)

if (wait_for_relay_|log _space(&m->rli))

{

sql _print_error("Slave 1/O thread aborted while
waiting for relay | og space");

goto err;

<cut >

read_event () cals net_safe_read() to read what the master has sent over the network.
gueue_event () writesthe read event to the relay log, and a so updates the counter which keeps track
of the space used by all existing relay logs. f | ush_mast er _i nf o() writesto the master.info
file the new position up to which the thread has read in the master's binlog. Finally, if relay logs take too
much space, the 1/0 thread blocks until the SQL thread signals it's okay to read and queue more events.
The <cut > code handles network failures and reconnections.

When the relay log gets too large, it is “rotated”: The 1/O thread stops writing to it, closes it, opens a
new relay log and writes to the new one. The old one is kept, until the SQL thread (see below) has fin-
ished executing it, then it is deleted. The meaning of “too large” is determined as follows:

e max_relay |log size,ifmax_relay | og _size>0

« max_binlog_size,ifmax_rel ay_| og_si ze =0or MySQL isolder than 4.0.14

8.3.2. The Slave SQL Thread

while (!sqgl _slave killed(thd,rli))
{

thd->proc_info = "Processing master |og event";
DBUG ASSERT(rli->sql _thd == thd);
THD_CHECK_SENTRY(t hd) ;

99

Replication

if (exec_relay_log_event(thd,rli))

/1 do not scare the user if SQ thread was sinply killed or stopped
if (!sqgl_slave killed(thd,rli))
sql _print_error("Error running query, slave SQL thread

aborted. Fix the problem and restart

the slave SQL thread with "SLAVE START".

We stopped at log '%' position %",

RPL_LOG NAME, Ilstr(rli->master_|og pos, |lbuff));
goto err;

}

exec_relay | og _event() reads an event from the relay log (by caling next _event ()).
next event () will start reading the next relay log file if the current one is finished; it will also wait
if there is no more relay log to read (because the 1/0 thread is stopped or the master has nothing more to
send to the dave). Finadly exec_relay | og_event() executes the read event (al
::exec_event () methods in |og_event.cc) (mostly this execution goes through
sql _par se. cc), thus updating the slave database and writing to r el ay- | og. i nf o the new posi-
tion up to which it has executed in the relay log. The: : exec_event () methodsinl og_event. cc
will take care of filter optionsliker epl i cat e- do-t abl e and such.

When the SQL thread hits the end of the relay log, it checks whether a new one exists (that is, whether a
rotation has occurred). If so, it deletes the already-read relay log and starts reading the new one. Other-
wise, it just waits until there's more datain the relay log.

8.3.3. Why 2 Threads?

In MySQL 3.23, we had only one thread on the slave, which did the whole job: read one event from the
connection to the master, executed it, read another event, executed it, etc.

In MySQL 4.0.2 we split the job into two threads, using arelay log file to exchange between them.

This makes code more complicated. We have to deal with the relay log being written at the end, read at
another position, at the same time. Plus handling the detection of EOF on the relay log, switching to the
new relay log. Also the SQL thread must do different reads, depending on whether the relay log it is
reading

» isheing written to by the I/O thread; then the relay log is partly in memory, not al on disk, and mu-
texes are needed to avoid confusion between threads.

» hasalready been rotated (the I/O thread is not writing to it anymore), in which case it isanormal file
that no other threads touches.

The advantages of having 2 threads instead of one:

» Helps having a more up-to-date slave. Reading a query is fast, executing it is slow. If the master
dies (burns), there are good chances that the 1/0 thread has caught almost all updates issued on the
master, and saved them in the relay log, for use by the SQL thread.

* Reducestherequired master-slave connection time. If the slave has not been connected for along
time, it is very late compared to the master. It means the SQL thread will have alot of executing to
do. So with the single-thread read-execute-read-execute technique, the slave will have to be connec-
ted for a long time to be able to fetch all updates from the master. Which is stupid, as for a signific-
ant part of the time, the connection will be idle, because the single thread is busy executing the

100

Replication

query. Whereas with 2 threads, the 1/O thread will fetch the binlogs from the master in a shorter
time. Then the connection is not needed anymore, and the SQL thread can continue executing the re-

lay log.

8.3.4. The Bi nl og Dunp Thread

Thisthread is created by the master when it receives a COM_BI NLOG_DUNMP request.

voi d nysql _binl og_send(THD* thd, char* |og_ident, ny_off_t pos,
ushort fl ags)
{

<cut >
if ((file=open_binlog(& og, log_file_nane, &errnsg)) < 0)
{

my_errno= ER_MASTER FATAL_ERROR READI NG Bl NLOG
goto err;

}
if (pos < BIN LOG HEADER SIZE || pos > ny_b filelength(& og))
errmsg= "Cient requested master to start replication from

i mpossi bl e position";
ny_errno= ER_MASTER_FATAL_ERROR_READI NG BI NLOG,

goto err;
}
ny_b seek(& og, pos); /1 Seek will done on next read
<cut >
/1 if we are at the start of the |og
i f (pos == BI N _LOG HEADER SI ZE)
{
/1 tell the client log name with a fake rotate_event
if (fake_rotate_event(net, packet, log file_nane, &errnsg))
{
ny_errno= ER_MASTER FATAL_ERROR_READI NG BI NLOG
goto err;
<cut >

while (!'net->error & net->vio != 0 & !thd->kill ed)
pthread_mutex_t *log | ock = nysgl _bin_|og.get |og |ock();

while (!(error = Log_event::read_| og_event (& og, packet, |og_lock)))

<cut >
if (my_net_wite(net, (char*)packet->ptr(), packet->length()))
{
errmsg = "Failed on ny_net wite()";
my_errno= ER_UNKNOWN_ ERROR;
goto err;
<cut >

If this thread starts reading from the beginning of abinlog, it is possible that the dave does not know the
binlog's name (for example it could have just asked “give me the FIRST binlog”). Using
fake_rotate_event (), the master tells the save the binlog's name (required for mast er . i nfo
and SHOW SLAVE STATUS) by building aRot at e_| og_event and sending this event to the slave.
In this event the slave will find the binlog's name. This event has zeros in the timestamp (shows up as
written in year “1970" when reading the relay log with nysql bi nl og).

101

Replication

8.4. How Replication Deals With...

8.4.1.

8.4.2.

8.4.3.

8.4.4.

8.4.5.

8.4.6.

8.4.7.

This section describes how replication handles various problematic issues.

aut o_i ncrenent Columns, LAST | NSERT | ()

When a query inserts into such a column, or uses LAST | NSERT ID(), one or two | n-
tvar | og_event arewrittento the binlog just beforethe Query | og_event.

User Variables (Since 4.1)

When a query uses a user variable, aUser _var | og_event iswritten to the binlog just before the
Query_| og_event.

System Variables

Example: SQL_MODE, FOREI GN_KEY_CHECKS. Not dealt with. Guilhem is working on it for version
5.0.

Some Functions

USER(), LOAD _FI LE() . Not dealt with. Will be solved with row-level binlogging (presently we have
query-level binlogging, but in the future we plan to support row-level binlogging too).

Non-repeatable UDF Functions

“Non repeatable’” means that they have a sort of randomness, for example they depend on the machine
(to generate aunique ID for example). Not dealt with. Will be solved with row-level binlogging.

Prepared Statements

For the moment, a substituted normal query is written to the master's binlog. Using prepared statements
on the slave aswell is on the TODO.

Temporary Tables

Temporary tables depend on the thread which created them, so any query event which uses such tablesis
marked with the LOG_EVENT_THREAD SPECI FI C_F flag. All events have in their header the id of
the thread which created them, so the slave knows which temporary table the query refersto.

When the dave is stopped (STOP SLAVE or even nysql adnmi n shut down), the in-use replicated
temporary tables are not dropped (like clients' temporary tables are). This way, when the slave restarts
they are still available.

When a connection using temporary tables terminates on the master, the master automatically writes
some DROP TEMPORARY TABLE statements for them so that they are dropped on the dave as well.

When the master brutally dies, then restarts, it drops al temporary tables which remained in t npdi r,
but without writing it to the binlog, so these temporary tables are still on the slave, and they will not be
dropped before the next slave's mysql d restart. To avoid this, the slave drops all replicated temporary
tables when it executesa St art _| og_event read from the master. Indeed such an event means the
master'smysql d hasrestarted so all preceding temporary tables have been dropped.

Presently we have a bug: if the slave nysql d is stopped while it was replicating a temporary table, then

102

8.4.8.

Replication

at restart it deletes this table (like a normal temporary table), which may cause a problem if subsequent
gueries on the master refer to thistable.

LOAD DATA [LOCAL] I NFILE (Since 4.0)

The master writes the loaded file to the binlog, but in small blocks rather than all at once. The slave cre-
ates a temporary file, the concatenation of each block. When the slave reads the final Ex-
ecute_| oad_| og_event, it loads al temporary files into the table and deletes the temporary files.
If the final event was instead a Del ete_fil e_| og_event then these temporary files are deleted
without loading.

8.5. How a Slave Asks Its Master to Send Its
Binary Log

The slave server must open a normal connection to its master. The MySQL account used to connect to
the master must have the REPLI CATI ON SLAVE privilege on the master. Then the slave must send the
COM _BI NLOG_DUMP command, as in this example taken from function r equest _dunp() :

static int request_dump(MSQL* nysql, MASTER INFO* ni,
bool *suppress_war ni ngs)
{

char buf[FN_REFLEN + 10];

int |en;

int binlog_flags = 0; // for now
char* | ognane = m ->nmast er _| og_narne;
DBUG _ENTER("request _dump");

/1 TODO if big log files: Change next to int8store()

i nt4store(buf, (longlong) m->master | og pos);

i nt2store(buf + 4, binlog flags);

i nt4store(buf + 6, server_id);

len = (uint) strlen(lognane);

mencpy(buf + 10, | ognane,|en);

if (sinple_conmmand(nmysql, COM BI NLOG DUWP, buf, len + 10, 1))

// act on errors

Here variable buf contains the arguments for COM Bl NLOG_DUNMP. It's the concatenation of:

* 4 bytes: the position in the master's binlog from which we want to start (i.e. “please master, send me
the binlog, starting from this position™).

* 2bytes: 0 for the moment.

e 4 bytes: thisdave's server id. Thisis used by the master to delete old Bi nl og Dunp threads which
wererelated to thisdave (seefunctionki | | _zonbi e_dunp_t hr eads() for details).

» variable-sized part: the name of the binlog we want. The dump will start from this binlog, at the pos-
ition indicated in the first four bytes.

Then send the command, and start reading the incoming packets from the master, liker ead_event ()
does (usingnet _saf e_r ead() likeexplained below). One should also, to be safe, handle all possible
cases of network problems, disconnections/reconnections, malformed events.

103

Replication

8.6. Network Packets in Detall

The communication protocol between the master and slave is the one that al other normal connections
use, as described earlier in this document. See Chapter 7, MySQL Client/Server Protocol. So after the
COM _BI NLOG_DUMP command has been sent, the communication between the master and slave isa se-
guence of packets, each of which contains an event. In sl ave. cc, functionr ead_event (), one has
an example. net_safe_read() is caled; it is able to detect wrong packets. After
net safe_read(), the event is ready to be interpreted; it starts at pointer (char*) mysql -
>net.read_pos + 1.Thatis (char*) nysql->net.read_pos + 1 isthefirst byte of the
event's timestamp, etc.

8.7. Replication Event Format in Detall
8.7.1. The Common Header

Each event starts with a header of size LOG_EVENT_HEADER_LEN=19 (defined in| og_event . h),
which contains:

e timestamp
4 bytes, seconds since 1970.
* eventtype

1 byte. 1 means START_EVENT, 2 means QUERY_EVENT, etc (these numbers are defined in an
enum Log_event _typeinl og_event. h).

e sarver ID

4 bytes. The server ID of the nysql d which created this event. When using circular replication
(with option - - | og- sl ave- updat es on), we use this server ID to avoid endless loops. Suppose
tthat M1, M2, and M3 have server ID values of 1, 2, and 3, and that they are replicating in circular
fashion: M1 is the master for M2, M2 is the master for M3, and M3 is that master for M1. The mas-
ter/server relationships ook like this:

ML- - - - >M2
AN

+- - MB<- +

A client sends an | NSERT query to M1. Then this is executed on M1, then written in the binary log
of M1, and the event's server ID is 1. The event is sent to M2, which executes it and writes it to the
binary log of M2; the event written still has server ID 1 (because that is the ID of the server that ori-
ginally created the event). The event is sent to M3, which executes it and writes it to the binary log
of M3, with server ID 1. This last event is sent to M1, which sees “server ID = 1" and understands
this event comes from itself, so hasto be ignored.

e event total size

4 bytes. Size of this event in bytes. Most events are 10-1000 bytes, except when using LOAD DATA
I NFI LE (where events contain the loaded file, so they can be big).

e position of the event in the binary log

4 bytes. Offset in bytes of the event in the binary log, asreturned by t el | () . It is the offset in the

104

Replication

binary log where this event was created i n the first place. Thatis, itiscopied as-isto the
relay log. It is used on the slave, for SHOW SLAVE STATUS to be able to show coordinates of the
last executed event in the master's coor dinate system. If this value were not stored in the event, we
could not know these coordinates because the slave cannot invoket el | () for the master's binary
log.

flags

2 bytes of flags. Almost unused for now. The only one which is used in 4.1 is
LOG _EVENT _THREAD SPECI FI C_F, whichisused only by mysql bi nl og (not by the replica-
tion code at al) to be able to dea properly with temporary tables. mysql bi nl og prints queries
from the binary log, so that one can feed these queries into mysql (the command-line interpreter),
to achieve incremental backup recovery. But if the binary log looks like this:

<thread id 1>
create tenporary table t(a int);
<thread id 2>
create tenporary table t(a int)

(two simultaneous threads used temporary tables with the same name, which is allowed as temporary
tables are visible only in the thread which created them), then simply feeding this into mysql will
lead to the “table t already exists” error. This is why events which use temporary tables are marked
with the flag, so that mysql bi nl og knowsit hasto set the pseudo_thread id before, like this:

SET PSEUDO THREAD | D=1;
create tenporary table t(a int);
SET PSEUDO THREAD | D=2;
Create tenporary table t(a int);

This way there is no confusion for the server which receives these queries. Always printing SET
PSEUDO THREAD | D, even when temporary tables are not used, would cause no bug, it would just
slow down.

8.7.2. The “Post-headers” (Event-specific Headers)

After the common header, each event has an event-specific header of fixed size (0 or more bytes) and a
variable-sized part (0 or more bytes). It's easy for the slave to know the size of the variable-sized part: it
is the event's size (contained in the common header) minus the size of the common header, minus the
size of the event-specific header.

START_EVENT

In MySQL 4.0 and 4.1, such events are written only for the first binary log since nysql d startup.
Binlogs created afterwards (by FLUSH LOGS) do not contain this event. In MySQL 5.0 we will
change this; al binary logs will start with a START_EVENT, but there will be a way to distinguish
between a START_EVENT created at mysql d startup and other START_EVENTS; such distinction
is needed because the first category of START _EVENT, which means the master has started, should
trigger some cleaning tasks on the slave (suppose the master died brutally and restarted: the dave
must delete old replicated temporary tables).

e 2 bytes: The binary log format version. Thisis 3 in MySQL 4.0 and 4.1; it will be 4 in MySQL
5.0.

e 50 bytes: The MySQL server's version (example: 4.0.14-debug-log).

105

Replication

4 bytes: Timestamp in seconds when this event was created (this is the moment when the binary
log was created). In fact thisis useless information as we already have the timestamp in the com-
mon header, so this useless timestamp should NOT be used, because we plan to change its mean-
ing soon.

No variable-sized part.

QUERY_EVENT

4 bytes: The thread 1D of the thread that issued this query. Needed for temporary tables. Thisis
aso useful for aDBA for knowing who did what on the master.

4 bytes: The time in seconds which the query took for execution. Only useful for inspection by
the DBA.

1 byte: The length of the name of the database which was the default database when the query
was executed (later in the event we store this name; this is necessary for queries like | NSERT
I NTO t VALUES(1) which don't specify the database, relying on the default database previ-
ously selected by USE).

2 bytes: The error code which the query got on the master. Error codes are defined in i n-

cl ude/ nysql d_error. h. 0 means no error. How come queries with a non-zero error code
can exist in the binary log? Thisis mainly due to the non-transactional nature of Myl SAMtables.
If an | NSERT SELECT fails after inserting 1000 rows (for example, with a duplicate-key viola-
tion), then we have to write this query to the binary log, because it truly modified the Myl SAM
table. For transactional tables, there should be no event with a non-zero error code (though it can
happen, for example if the connection was interrupted (Control-C)). The slave checks the error
code: After executing the query itself, it compares the error code it got with the error code in the
event, and if they are different it stopsreplicating (unless - - sl ave- ski p- er r or s was used).

Variable-sized part: The concatenation of the name of the default database (null-terminated) and
the query. The slave knows the size of the name of the default database (it's in the event-specific
header) so by subtraction it can know the size of the query.

STOP_EVENT

No event-specific header, no variable-sized part. It just means “Stop” and the event's type saysit al.
Thisevent is purely for informational purposes, it is not even queued into the relay log.

ROTATE_EVENT

This event isinformation for the slave to know the name of the next binary log it is going to receive.

8 bytes: Useless, alway contains the number 4 (meaning the next event starts at position 4 in the
next binary log).

variable-sized part: The name of the next binary log.

I NTVAR_EVENT

8 bytes: the value to be used for the aut o_i ncr enent counter or LAST | NSERT_1 D() . 8
bytes corresponds to the size of MySQL's Bl G NT type.

No variable-sized part.

LOAD_EVENT

Thisis an event for internal use. One should only need to be able to read CREATE_FI LE_EVENT

106

Replication

(see below).
SLAVE_EVENT

This event is never written so it cannot exist in a binlog. It was meant for failsafe replication which
will be reworked.

CREATE_FI LE_EVENT

LOAD DATA | NFI LE is not written to the binlog like other queries; it is written in the form of a
CREATE_FI LE_EVENT; the command does not appear in clear-text in the binlog, it's in a packed
format. This event tells the slave to create a temporary file and fill it with a first data block. Later,
zero or more APPEND BLOCK EVENT events append blocks to this temporary file. EX-

EC LOAD EVENT tells the dave to load the temporary file into the table, or DE-

LETE _FI LE_EVENT tells the dave not to do the load and to delete the temporary file. DE-

LETE_FI LE_EVENT occursis when the LOAD DATA failed on the master: on the master we start
to write loaded blocks to the binlog before the end of the command. If for some reason there is an er-
ror, we haveto tell the slave to abort the load. The format for this event is more complicated than for
others, because the command has many options. Unlike other events, fixed headers and variable-
sized parts are intermixed; thisis due to the history of the LOAD DATA | NFI LE command.

e 4bytes: Thethread ID of the thread that issued thisLOAD DATA | NFI LE. Needed for tempor-
ary tables. Thisisalso useful for aDBA for knowing who did what on the master.

e 4 bytes: The time in seconds which the LOAD DATA | NFI LE took for execution. Only useful
for inspection by the DBA.

e 4 bytes: The number of lines to skip at the beginning of the file (option | GNORE nunber
LI NES of LOAD DATA | NFI LE).

« 1 byte: The size of the name of the table which is to be loaded.
e 1 byte: The size of the name of the database where thistableis.

e 4 bytes: The number of columns to be loaded (option (col _nane, .. .)). Will be non-zero
only if the columns to load were explicitly mentioned in the command.

e 4dbytes: AnID for thisfile (1, 2, 3, etc). Thisis necessary in case several LOAD DATA | NFI LE
commands have been run in parallel on the master: in that case the binlog contains events for the
first command and for the second command intermixed; the ID is used to resolve to which file
the blocksin APPEND_BLOCK _EVENT must be appended, and which file must be loaded by the
EXEC _LQOAD_EVENT event, and which file must be deleted by the DELETE_FI LE_EVENT.

e 1byte: The size of thefield-terminating string (FI ELDS TERM NATED BY option).

e variable-sized part: The field-terminating string (null-terminated).

» 1byte: The size of thefield-enclosing string (FI ELDS ENCLCSED BY option).

e variable-sized part: The field-enclosing string (null-terminated).

* 1byte: The size of the line-terminating string (LI NES TERM NATED BY option).

e variable-sized part: The line-terminating string (null-terminated).

* 1byte: Thesize of theline-starting string (LI NES STARTI NG BY option).

e variable-sized part: The line-starting string (null-terminated).

107

Replication

* 1 byte: The size of the escaping string (FI ELDS ESCAPED BY option).
e variable-sized part: The escaping string (null-terminated).

+ 1byte: Flags: OPT_ENCLOSED FLAG(FI ELD OPTI ONALLY ENCLOSED BY option), RE-
PLACE_FLAG (LOAD DATA | NFI LE REPLACE), | GNORE_FLAG (LOAD DATA | NFI LE
| GNORE), DUMPFI LE_FLAG (unused). All theseare defined inl og_event . h.

e 1 byte: The size of the name of the first column to |oad.

LINNC (o

* 1 byte: The size of the name of the last column to load.

e Variable-sized part: The name of the first column to load (null-terminated).

* €fc

* Variable-sized part: The name of the last column to load (null-terminated).

* Variable-sized part: The name of the table which isto be loaded (null-terminated).

e Variable-sized part: The name of the database containing the table (null-terminated).

* Variable-sized part: The name of the file which was loaded (that's the original name, from the
master) (null-terminated).

e Variable-sized part: The block of raw datato load.
Here is a concrete example:

On the master we have file '/mtnp/u.txt' which contains:
>1,2,3

>4,5,6

>7,8,9

>10, 11, 12

And we issue this comand on the naster:

| oad data infile '/mtnp/u.txt' replace into table x fields
termnated by ',' optionally enclosed by '"' escaped by "\\'
lines starting by '> termnated by '\n" ignore 2 lines (a,b,c);

Then in the master's binlog we have this event (hexadecimal dunp):

00000180: db4f 153f 0801 0000 o2....
00000190: 006f 0000 0088 0100 0000 0004 0000 0000 .0..............
000001a0: 0000 0002 0000 0001 0403 0000 0003 0000
000001b0: 0001 2c01 2201 0a01 3e01 5c06 0101 0161 ..,."...>\....a
000001c0: 0062 0063 0078 0074 6573 7400 2f6d 2f74 .b.c.x.test./nmt
000001d0: 6d70 2f75 2e74 7874 003e 312c 322c 330a np/u.txt.>1,2, 3.
000001e0: 3e34 2c35 2c36 0a3e 372c 382c 390a 3e31 >4,5,6.>7,8,9.>1
000001f 0: 302c 3131 2c31 32db 4f15 3f0a 0100 0000 O0,11,12.07?.....
00000200: 1700 0000 f701 0000 0000 0300 0000

e Line 180: timestamp db4f153f, event's type (08), server id (01 0000 00).

e Line 190: event's size (6f 0000 00), position in the binlog (88 0100 00) (that's 392 in decimal
base), flags (00 00), thread id (04 0000 00), time it took (00 0000 00).

e Line 1a0: number of lines to skip at the beginning of the file (02 0000 00), size of the table's

108

Replication

name (01), size of the database's name (04), number of columns to load (03 0000 00), the file'sid
(03 0000 00).

Line 1b0: size of the field terminating string (01), field terminating string (2c i.e. ,), size of the
field enclosing string (01), field enclosing string (22 i.e. "), size of the line terminating string
(01), line terminating string (Oa i.e. newline), size of the line starting string (01), line starting
string (3ei.e. >), size of the escaping string (01), escaping string (5c¢ i.e. backslash), flags (06)
(that's OPT_ENCLOSED_FLAG| REPLACE_FLAG), size of the name of the first column to load
(01), size of the name of the second column to load (01), size of the name of the third column to
load (01), name of the first columnto load (61 00i.e. "a").

Line 1c0: name of the second column to load (62 00), name of the third column to load (63 00),
name of the table to load (78 00), name of the database to load (74 6573 7400), name of the file
loaded on the master (2f6d 2f74 6d70 2f75 2e74 7874 00).

Line 1d0 and following: raw data to load (3e 312c 322¢ 330a 3e34 2¢35 2¢36 0a3e 372c 382c
390a 3e31 302c 3131 2c31 32). The next byte is the beginning of the EXEC LOAD EVENT
event.

APPEND_BLOCK_EVENT

4 bytes: The ID of the file this block should be appended to.

Variable-sized part: the raw datato load.

EXEC_LOAD_EVENT

4 bytes: the ID of thefile to be loaded.

No variable-sized part.

DELETE_FI LE_EVENT

4 bytes: The ID of thefile to be deleted.

No variable-sized part.

NEW LOAD_EVENT

For internal use.

RAND_EVENT

RAND() in MySQL uses 2 seeds to compute the random number.

8 bytes: Value for the first seed.
8 bytes:
Vaue for the second seed.

No variable-sized part.

USER_VAR_EVENT

4 bytes: the size of the name of the user variable.

variable-sized part: A concatenation. First is the name of the user variable. Second is one byte,
non-zero if the content of the variable is the SQL value NULL, ASCII 0 otherwise. If this bytes

109

Replication

was ASCII 0, then the following parts exist in the event. Third is one byte, the type of the user
variable, which corresponds to elements of enum Item result defined in i ncl ude/

nysqgl _com h. Fourth is 4 bytes, the number of the character set of the user variable (needed
for a string variable). Fifth is 4 bytes, the size of the user variable's value (corresponds to mem-
ber val _| en of class |t em stri ng). Sixth is variable-sized: for a string variable it is the
string, for afloat or integer variableit isits valuein 8 bytes.

8.8. Plans

We have already made extensive changes to the above in MySQL 5.0. For an upcoming version we plan
anew format where data is replicated by row instead of by statement. This makes it possible to replicate

data from one MySQL Cluster to another. We also plan new functionality to handle replication connec-
tions from multiple masters into one slave.

110

Chapter 9. Myl SAMRecord Structure
9.1. Introduction

When you say:

CREATE TABLE Tablel ...

MySQL creetes files named Tabl el. MYD ("MySQL Datd"), Tabl el. Myl ("MySQL Index"), and
Tabl el. f r m("Format"). These fileswill bein the directory:

/ <dat adi r >/ <dat abase>/

For example, if you use Linux, you might find the files in the / usr/ | ocal / var/t est directory
(assuming your database name is t est). if you use Windows, you might find the files in the
\ nysql \ dat a\ t est\ directory.

Let'slook at the. MYD Datafile (Myl SAMSQL Datafile) more closely. There are three possible formats
--- fixed, dynamic, and packed. Firgt, let's discuss the fixed format.

» PageSize

Unlike most DBMSs, MySQL doesn't store on disk using pages. Therefore you will not see filler
space between rows. (Reminder: This does not refer to BDB and | nnoDB tables, which do use

pages).
* Record Header
The minimal record header is a set of flags:
e "X bit" =0if row isdeeted, = 1if row is not deleted
e "Null Bits" = 0if columnisnot NULL, = 1 if column is NULL
e "Filler Bits' =1

The length of the record header isthus:

(1 + nunber of NULL colums + 7) / 8 bytes

After the header, all columns are stored in the order that they were created, which is the same order that
you would get from SHOW COLUNS.

Here's an example. Suppose you say:

CREATE TABLE Tabl el (col uml CHAR(1), colum2 CHAR(1), colum3 CHAR(1));

| NSERT | NTO Tabl el VALUES ('a b, 'c');
| NSERT | NTO Tabl el VALUES ('d' NULL, 'e');

A CHAR(1) column takes precisely one byte (plus one bit of overhead that is assighed to every column
--- I'll describe the details of column storage later). So thefile Tabl e1. MYD looks like this:

111

My SAMRecord Structure

Hexadecimal Display of Tabl el. MyDfile
F1 61 62 63 00 F5 64 00 66 00abc..d e.

Here's how to read this hexadecimal-dump display:

» The hexadecimal numbers F1 61 62 63 00 F5 64 20 66 00 are byte values and the
column on the right is an attempt to show the same bytesin ASCII.

e TheF1 byte meansthat there are no null fieldsin the first row.

» TheF5 byte meansthat the second column of the second row is NULL.

(It's probably easier to understand the flag setting if you restate F5 as11110101 bi nary, and (@) no-
tice that the third flag bit from the right ison, and (b) remember that the first flag bit is the X bit.)

There are complications --- the record header is more complex if there are variable-length fields --- but
the simple display shown in the example is exactly what you'd see if you looked at the MySQL Datafile
with a debugger or a hexadecimal file dumper.

So much for the fixed format. Now, let's discuss the dynamic format.

The dynamic file format is necessary if rows can vary in size. That will be the case if there are BLOB
columns, or "true" VARCHAR columns. (Remember that MySQL may treat VARCHAR columns as if
they're CHAR columns, in which case the fixed format is used.) A dynamic row has more fields in the
header. The important ones are "the actual length", "the unused length”, and "the overflow pointer”. The
actual length is the total number of bytes in all the columns. The unused length is the total number of
bytes between one physical record and the next one. The overflow pointer is the location of the rest of
the record if there are multiple parts.

For example, hereis adynamic row:

03, 00 start of header

04 actual length

Oc unused | ength

01, fc flags + overfl ow pointer
*okok ok data in the row
kkhkkkhkkkhkkkhkkkkkx unused bytes

<-- next row starts here)

In the example, the actual length and the unused length are short (one byte each) because the table defin-
ition says that the columns are short --- if the columns were potentially large, then the actual length and
the unused length could be two bytes each, three bytes each, and so on. In this case, actual length plus
unused length is 10 hexadecimal (sixteen decimal), which is aminimum.

Asfor the third format --- packed --- we will only say briefly that:

» Numeric values are stored in aform that depends on the range (start/end values) for the data type.

» All columns are packed using either Huffman or enum coding.

For details, see the source files /nyisam mi _statrec.c (for fixed format), /nyis-
am m _dynrec. c (for dynamic format), and/ nyi saml m _packr ec. ¢ (for packed format).

112

My SAMRecord Structure

Note: Internally, MySQL uses a format much like the fixed format which it uses for disk storage. The
main differences are:

1

2.

BL OB values have alength and a memory pointer rather than being stored inline.

"True VARCHAR" (a column storage which will be fully implemented in version 5.0) will have a
16-hit length plus the data.

All integer or floating-point numbers are stored with the low byte first. Point (3) does not apply for
| SAMstorage or internals.

9.2. Physical Attributes of Columns

Next I'll describe the physical attributes of each column in a row. The format depends entirely on the
data type and the size of the column, so, for every datatype, I'll give a description and an example.

» Thecharacter datatypes

CHAR

Storage: fixed-length string with space padding on the right.

Example: a CHAR(5) column containing the value ' A" looks like: hexadeci mal 41 20
20 20 20 -- (length=5,value="A ")

VARCHAR

Storage: variable-length string with a preceding length.

Example: a VARCHAR(7) column containing ' A" looks like: hexadeci mal 01 41 --
(length=1, value="A")

In MySQL 4.1 the length is always 1 byte. In MySQL 5.0 the length may be either 1 byte (for up
to 255) or 2 bytes (for 256 to 65535). Some further random notes about the new format: In old
tables (from MySQL 41 and earlier), VARCHAR columns have type
MYSQL_TYPE_ VAR _STRI NG, which works exactly like a CHAR with the exception that if you
do an ALTER TABLE, it's converted to a true VARCHAR (MYSQL_TYPE VARCHAR). (This
means that old tables will work as before for users.) ... Apart from the above case, there are no
longer any automatic changes from CHAR to VARCHAR or from VARCHAR to CHAR. MySQL
will remember the declared type and stick to it ... VARCHAR is implemented in fi el d. h and
fiel d. cc through the new class Fi el d_varstring .. Myl SAM implements VARCHAR
both for dynamic-length and fixed-length rows (as signaled with the ROW FORNMAT flag) ...
VARCHAR now stores trailing spaces. (If they don't fit, that's an error in strict mode.) Trailing
spaces are not significant in comparisons ... In t abl e- >r ecor d, the space is reserved for
length (1 or 2 bytes) plus data ... The number of bytes used to store the length is in the field
Fi el d_varchar->l ength_bytes. Note that internally this can be 2 even if
Fiel d_varchar->field_length < 256 (for example, for a shortened key to a
var char (256)) There is a new macro,
HA VARCHAR PACKLENGTH(fi el d_| ength), that can beused on fi el d->l ength in
write_row / read_row to check how many length bytes are used. (In this context we can't have a
field_length < 256 with a 2-byte pack length) ... When creating a key for the handler,
HA KEYTYPE_VARTEXT1 and HA_KEYTYPE_BI NARY1 are used for a key on a column that
has a 1-byte length prefix and HA_KEYTYPE_VARTEXT2 and HA_KEYTYPE_BI NARY2 for a
column that has a 2-byte length prefix. (In the future we will probably delete
HA KEYTYPE_BI NARY#, as this can be instead be done by just using the bi nary character

113

My SAMRecord Structure

set with HA KEYTYPE_VARTEXT#.) ... When sending a key to the handler for i n-

dex_read() or records in_range, we always use a 2-byte length for the VARCHAR to make
things simpler. (For version 5.1 we intend to change CHARSs to also use a 2-byte length for these
functions, as this will speed up and simplify the key handling code on the handler side.) ... The
test case file nysql -t est/i ncl ude/ var char. i nc should be included in the code that
teststhe handler. Seet / myi sam t est for how to use this. Y ou should verify the result against
theoneinnysql -test/t/ nyi sam resul t to ensure that you get the correct results ... A
client sees both the old and new VARCHAR type as MYSQL_TYPE_VAR_STRI NG It will never
(at least for 5.0) see MYSQL_TYPE_VARCHAR. This ensures that old clients will work as before
... If you run MySQL 5.0 with the - - new option, MySQL will show old VARCHAR columns as
' CHAR in SHOW CREATE TABLE. (Thisis useful when testing whether a table is using the
new VARCHAR type or not.)

The numeric data types

Important: MySQL almost always stores multi-byte binary numbers with the low byte first. Thisis
called "little-endian" numeric storage; it's normal on Intel x86 machines; MySQL uses it even for
non-Intel machines so that databases will be portable.

TI NYI NT

« Storage: fixed-length binary, always one byte.

e Example: a TI NYI NT column containing 65 looks like: hexadeci mal 41 -- (length = 1,
value = 65)

SMALLI NT
» Storage: fixed-length binary, always two bytes.

e Example: a SMALLI NT column containing 65 looks like: hexadeci mal 41 00 -- (length =
2, value = 65)

MEDI UM NT
« Storage: fixed-length binary, always three bytes.

e Example: a MEDI UM NT column containing 65 looks like: hexadeci mal 41 00 00 --
(length = 3, value = 65)

I NT
« Storage: fixed-length binary, aways four bytes.

e Example: an | NT column containing 65 looks like: hexadeci mal 41 00 00 00 -- (length
=4, value = 65)

Bl G NT
» Storage: fixed-length binary, always eight bytes.

e Example: aBl G NT column containing 65 looks like: hexadeci mal 41 00 00 00 00
00 00 00 -- (length = 8, value = 65)

FLOAT

e Storage: fixed-length binary, always four bytes.

114

My SAMRecord Structure

« Example: a FLOAT column containing approximately 65 looks like: hexadeci mal 00 00
82 42 -- (length = 4, value = 65)

DOUBLE PRECI SI ON
« Storage: fixed-length binary, aways eight bytes.

* Example: a DOUBLE PRECI SI ON column containing approximately 65 looks like: hexa-
decimal 00 00 00 00 00 40 50 40 -- (length = 8, value = 65)

REAL

» Storage: same as FLOAT, or same as DOUBLE PRECI Sl ON, depending on the setting of the -
- ansi option.

DECI MAL
 MySQL 4.1 Storage: fixed-length string, with aleading byte for the sign, if any.

e Example: a DECI MAL(2) column containing 65 looks like: hexadeci mal 20 36 35 --
(length=3,value="' 65")

* Example: aDECI MAL(2) UNSI GNED column containing 65 looks like: hexadeci mal 36
35 -- (length=2, value=" 65")

* Example: a DECI MAL(4, 2) UNSI GNED column containing 65 looks like: hexadeci mal
36 35 2E 30 30 -- (length=5, value=" 65. 00")

« MySQL 5.0 Storage: high byte first, four-byte chunks. We call the four-byte chunks "* decimal*
digits'. Since 2**32 = 4294967296, one *decima* digit can hold values up to 10**9
(999999999), and two *decimal* digits can hold values up to 10**18, and so on. Thereisan im-
plied decimal point. Details arein /strings/decimal .c.

e Example: aMySQL 5.0 DECI MAL(21, 9) column conaining 111222333444, 555666777
looks like: hexadecimal 80 6f Od 40 8a 04 21 1le cd 59 -- (flag + 111,
'222333444', '555666777").

NUMERI C

e Storage: same as DECI MAL.

BOOL

e Storage: sameas Tl NYI NT.

Thetemporal data types

DATE

« Storage: 3 byte integer, low byte first. Packed as: 'day + month* 32 + year* 16* 32'

e Example: a DATE column containing ' 1962- 01- 02' looks like: hexadeci mal 22 54
OF

DATETI ME
» Storage: eight bytes.

e Part 1isa32-hit integer containing year* 10000 + month* 100 + day.

115

My SAMRecord Structure

e Part 2isa32-bit integer containing hour* 10000 + minute* 100 + second.

e Example: a DATETI ME column for ' 0001- 01- 01 01: 01: 01' looks like: hexadeci nal
B5 2E 11 5A 02 00 00 00

TI ME

e Storage: 3 bytes, low byte first. This is stored as seconds:
days* 24* 3600+hours* 3600+minutes* 60+seconds

e Example: aTl ME column containing' 1 02: 03: 04' (1 day 2 hour 3 minutes and 4 seconds)
lookslike: hexadeci mal 58 6E 01

TI MESTAMP

+ Storage: 4 bytes, low byte first. Stored as unix ti me(), which is seconds since the Epoch
(00:00:00 UTC, January 1, 1970).

e Example: a TI MESTAMP column containing * 2003- 01- 01 01: 01: 01" looks like: hexa-
deci mal 4D AE 12 23

YEAR

e Storage: same as unsigned TI NYI NT with a base value of 0 = 1901.

Others

SET

« Storage: one byte for each eight membersin the set.

e Maximum length: eight bytes (for maximum 64 members).

» Thisisabit list. The least significant bit corresponds to the first listed member of the set.

e Example aSET(' A',' B',' C) column containing' A" looks like: 01 -- (Iength = 1, value
='A")

ENUM
e Storage: one byte if less than 256 alternatives, else two bytes.

e Thisisan index. The value 1 corresponds to the first listed alternative. (Note: ENUM always re-
serves the value O for an erroneous value. Thisexplainswhy ' A" is1instead of 0.)

e Example an ENUM ' A", ' B',' C) column containing ' A" looks like: 01 -- (length = 1,
value="A")

The Large-Object data types
Warning: Because Tl NYBLOB's preceding length is one byte long (the size of a Tl NYI NT) and ME-
DI UMBLOB's preceding length is three bytes long (the size of a MEDI UM NT), it's easy to think

there's some sort of correspondence between the the BLOB and | NT types. There isn't --- a BLOB's
preceding length is not four byteslong (the size of an | NT).

TI NYBLOB

e Storage: variable-length string with a preceding one-byte length.

116

My SAMRecord Structure

e Example: a TI NYBLOB column containing ' A" looks like: hexadeci mal 01 41 -- (length
=2, vaue="A)

TI NYTEXT

e Storage: sameas TI NYBLOB.

BLOB

» Storage: variable-length string with a preceding two-byte length.

e Example: aBLOB column containing ' A" lookslike: hexadeci mal 01 00 41 -- (length =
2, value="A")

TEXT

e Storage: same as BLOB.

MEDI UVMBLOB

» Storage: variable-length string with a preceding length.

e Example: aMEDI UVBLOB column containing ' A' looks like: hexadeci mal 01 00 00 41
-- (length = 4, value ="A")

MEDI UMTEXT

¢ Storage: same as MEDI UVBLOB.

LONGBLOB

e Storage: variable-length string with a preceding four-byte length.

o Example: a LONGBLOB column containing * A" looks like: hexadeci mal 01 00 00 00
41 -- (length=5, value="A")

LONGTEXT

e Storage: same as LONGBLOB.

9.3. Where to Look For More Information

References:

Most of the formatting work for Myl SAM columns is visible in the program / sql / fi el d. cc in the
source code directory. And in the Myl SAMdirectory, the files that do formatting work for different re-
cord formats are /nyisam m _statrec.c, /nyisanmim _dynrec.c, and /nyis-
am m _packrec. c.

117

Chapter 10. The . MYl file

A . Ml filefor aMyl SAMtable contains the tabl€e's indexes.

The . Myl file hastwo parts: the header information and the key values. So the next sub-sections will be
"The. MYl Header" and"The. MYl Key Values'.

The. MYl Header

A . M1 file begins with a header, with information about options, about file sizes, and about the "keys'.
In MySQL terminology, a"key" is something that you create with CREATE [UNI QUE] | NDEX.

Program files which read and write. MYl headersareinthe. / nyi samdirectory: ni _open. ¢ hasthe
routines that write each section of the header, m _cr eat e. ¢ has aroutine that callsthe mi _open. ¢
routinesin order, and nmyi sandef . h has structure definitions corresponding to what we're about to de-
scribe.

These are the main header sections:

Section Cccurrences

state Cccurs 1 tine

base Cccurs 1 tine

keydef (i ncluding keysegs) Cccurs once for each key
reci nfo Cccurs once for each field

Now we will look at each of these sections, showing each field.

We are going to use an example table throughout the description. To make the example table, we ex-
ecuted these statements:

CREATE TABLE T (S1 CHAR(1), S2 CHAR(2), S3 CHAR(3)):
CREATE UNIQUE INDEX 11 ON T (S1):
CREATE INDEX 12 ON T (S2, S3):

I NSERT INTO T VALUES ('1', 'aa', 'b');

| NSERT INTO T VALUES ('2', 'aa', 'bb'):
I NSERT INTO T VALUES ('3', 'aa', 'bbb');
DELETE FROM T WHERE S1 = '2';

We took ahexadecimal dump of the resulting file, T. MYI .

In all the individual descriptions below, the column labeled “Dump From Example File’ has the exact
bytes that are in T. Myl . You can verify that by executing the same statements and looking at a hexa-
decimal dump yourself. With Linux thisis possible using od - h T. Myl ; with Windows you can use
the command-line debugger.

Along with the typical value, we may include a comment. The comment usually explains why the value
iswhat it is. Sometimes the comment is derived from the comments in the source code.

State
Thissectioniswrittenby m _open.c,m state info wite().

Nane Si ze Dunp From Exanple File Conment

file_version 4 FE FE 07 01 fromnyisamfile_magic

118

The. MYI file

options 2 00 02 HA OPTI ON_COVPRESS RECOR
etc.

header _| ength 2 01 A2 t hi s header exanpl e has
0x01A2 bytes

state_info_l ength 2 00 BO = M _STATE_I NFO_SI ZE
defined in nyi sandef. h

base _info | ength 2 00 64 = M _BASE | NFO S| ZE
defined in nyi sandef. h

base_pos 2 00 ™4 = where the base
section starts

key parts 2 00 03 a key part is a columm
within a key

uni que_key_parts 2 00 00 key- part s+uni que-parts

keys 1 02 here are 2 keys --
1 and |2

uni ques 1 00 nunber of hash uni que
keys used internally
in tenporary tables
(nothing to do with
"UNI QUE' definitions)

| anguage 1 08 "l anguage for indexes"

max_bl ock_si ze 1 01

fulltext_keys 1 00 # of fulltext keys.
=0if version <= 4.0

not _used 1 00 to align to 8-byte
boundary

st at e- >open_count 2 00 01

st at e- >changed 1 39 set if table updated,
reset if shutdown (so
one can exanmine this
to see if there was an
update wi t hout proper
shut down)

st at e- >sor t key 1 FF "sorted by this key"
(not used)

state->state.records 8 00 00 00 00 00 00 00 02 number of actual
un-del eted, records

st at e- >st at e. del 8 00 00 00 00 00 00 00 01 # of deleted records

state->split 8 00 00 00 00 00 00 00 03 # of "chunks" (e.qg.
records or spaces |eft
after record del etion)

stat e->del I i nk 8 00 00 00 00 00 00 00 07 "Link to next renoved
"block". Initially =
HA OFFSET_ERROR

state->state. key file length 8 00 00 00 00 00 00 Oc 00 2048

state->state.data_file_length 8 00 00 00 00 OO0 00 00 15 = size of .MYD file

state->state.enpty 8 00 00 00 00 00 00 00 00

state->state. key_enpty 8 00 00 00 00 00 00 00 00

st at e- >aut o_i ncrenent 8 00 00 00 00 00 00 00 00

st at e- >checksum 8 00 00 00 00 00 00 00 00

st at e- >process 4 00 00 09 E6 fromgetpid(). process
of last update

st at e- >uni que 4 00 00 00 OB initially =0

st at e- >st at us 4 00 00 00 00

st at e- >updat e_count 4 00 00 00 04 updated for each wite

lock (there were 3
inserts + 1 delete,
total 4 operations)

st at e- >key_r oot 8 00 00 00 00 OO0 00 04 00 offset in file where
|1 keys start, can be
= HA OFFSET_ERROR

00 00 00 00 00 00 08 00 state->key root occurs

twi ce because there

119

The. MYI file

st at e- >key_del

st at e- >sec_i ndex_changed

st at e- >sec_i ndex_used

st at e- >versi on
st at e- >key_map
state->create tine

state->recover_tine
state->check_tine

st at e- >rec_per_key_rows
state->rec_per_key_parts

base

0 00 A~

+ 00 00 00

FF

00

00

3F
00
00

00
00
00
00
00
00

FF

00

00

3F
00
00

00
00
00
00
00
00

FF

00

00

EB
00
00

00
00
00
00
00
00

FF

00

00

F7
03
00

00
00
00
00
00
00

FF FF FF FF

3F 3F EB F7

00 00 00 00
3F 3F EB F7
00 00 00 00

are two keys

delete Iinks for keys
(occurs many tines if
many del ete |inks)
sec_i ndex = secondary
i ndex (presunably)

not currently used
"which extra indexes
are in use"

not currently used
"timestanp of create"
"what keys are in use"
"ti me when dat abase
created" (actually:
time when file nmade)
“"tinme of |ast recover"
“"time of |ast check"

(key_parts = 3, so
rec_per_key parts
occurs 3 times)

This section is written by m _open. ¢, mi _base_i nfo_w i te(). The corresponding structure in

nyi sandef. hisM _BASE | NFO

In our example T. MYI1 file, the first byte of the base section is at offset 0x00d4. That's where it's sup-
posed to be, according to the header field base_pos (above).

Name

base- >keyst art

base->max_data_ fi
base- >max_key fil
base- >records
base->rel oc

base- >mean_row | ength
base->recl ength

le length
e _length

base- >pack_recl ength
base->mi n_pack_| ength
base- >max_pack | ength
base->mi n_bl ock_| ength
base->fi el ds

base->pack_fi el ds
base->rec_refl ength
base->key refl ength

base- >keys

base- >aut o_key

base- >pack_bits
base- >bl obs

base- >max_key_bl ock_I ength

base- >max_key | ength
base->extra_al | oc_bytes

base->extra_al | oc_procent
base->rai d_t ype

Si ze Dunp From Exanple File

PEN N O NDNDNRPRRPRRRERA BB DMD AR ©

00

00
00
00
00
00
00

00
00
00
00
00

00
04
04
02
00
00
00
04

00
00

00
00

00

00
00
00
00
00
00

00
00
00
00
00

00

00
00
00
10

00

00

00
00
00
00
00
00

00
00
00
00
00

00

00

00
00
00
00
00
07

07
07
07
14
04

00

00 00 04 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Comment

keys start at offset
1024 (0x0400)

[engt h(sl) +l engt h(s2)
+l engt h(s3) =7

4 fields: 3 defined,
plus 1 extra

was 0O at start

I ength of block = 1024
byt es (0x0400)
i ncludi ng | ength of

poi nt er

120

The. MYI file

base->rai d_chunks 2 00 00

base->rai d_chunksi ze 4 00 00 00 00
[extra] i.e. filler 6 00 00 00 00 00 00
keydef

This section is written by m _open. ¢, mi _keydef write(). The corresponding structure in nmy-
i sandef . hisM _KEYDEF.

This is a multiple-occurrence structure. Since there are two indexes in our example (11 and 12), we will
see that keydef occurs two times below. There is a subordinate structure, keyseg, which also occurs
multiple times (once within the keydef for |1 and two timeswithin the keydef for 12).

Nane Size Dunp From Exanple File Conmrent

/* key definition for 11 */

keydef - >keysegs 1 01 there is 1 keyseg (for
colum S1).
keydef - >key_al g 1 01 algorithm= Rtree or
Btree
keydef - >f | ag 2 00 49 HA_NCSAME +
HA SPACE_PACK_USED +
HA_NULL PART_KEY
keydef - >bl ock_| engt h 2 04 00 .e. 1024
key def->keyl ength 2 00 06 i el d- count +si zeof (S1)
i zeof (ROWN D)
keydef - >mi nl engt h 2 00 06
keydef - >max| engt h 2 00 06
/* keyseg for S1 in I1 */
keyseg- >t ype 1 01 [* 11(S1) size(S1)=1
colum =1 */
= HA KEYTYPE_TEXT
keyseg- >l anguage 1 08
keyseg->nul | _bit 1 02
keyseg->bit_start 1 00
keyseg- >bit _end 1 00
[0] i.e. filler 1 00
keyseg->fl ag 2 00 14 HA NULL_PART +
HA PART_KEY
keyseg- >l engt h 2 00 01 length(Sl) =1
keyseg- >start 4 00 00 00 01 offset in the row
keyseg->nul | _pos 4 00 00 00 00
/* key definition for 12 */
keydef - >keysegs 1 02 keysegs=2, for colums
S2 and S3
keydef - >key_al g 1 01 algorithm= Rtree or
Btree
keydef - >f | ag 2 00 48 HA SPACE_PACK_USED +
HA_NULL PART_KEY
keydef - >bl ock_| engt h 2 04 00 .e. 1024
key def->keyl ength 2 00 OB f el d-count + si zeof (al
si zeof (RI D)
keydef - >ni nl engt h 2 00 OB
keydef - >max| engt h 2 00 0B
/* keyseg for S2 in |2 */
keyseg- >t ype 1 01 * I2(52) S|ze(52) =2,
colum = 2 *
keyseg- >l anguage 1 08

121

The. MYI file

keyseg->nul | _bit 1 04

keyseg->bit_start 1 00

keyseg- >bi t _end 1 00

[0] i.e. filler 1 00

keyseg->fl ag 2 00 14 HA NULL_PART +

HA PART_KEY

keyseg->l ength 2 00 02 length(S2) = 2

keyseg- >start 4 00 00 00 02

keyseg->nul | _pos 4 00 00 00 00

/* keyseg for S3 in 12 */

keyseg- >t ype 1 01 /[* 12(S3) S|ze(83) =3,
colum = 3 */

keyseg- >l anguage 1 08

keyseg->nul | _bit 1 08

keyseg->bit_start 1 00

keyseg- >bi t _end 1 00

[0] i.e. filler 1 00

keyseg->f | ag 2 00 14 HA NULL_ PART +

HA PART_KEY

keyseg- >l ength 2 00 03 l ength(S3) = 3

keyseg- >st art 4 00 00 00 04

keyseg->nul | _pos 4 00 00 00 00

recinfo

Ther eci nf o section iswritten by m _open. ¢, m _reci nfo_write(). The corresponding struc-
tureinnyi sandef . hisM _ COLUVNDEF.

This is another multiple-occurrence structure. It appears once for each field that appearsin akey, includ-
ing an extrafield that appears at the start and has flags (for deletion and for null fields).

Nane Size Dunp From Exanple File Comrent
reci nfo->type 2 00 00 extra
reci nfo->length 2 00 01

reci nfo->null _bit 1 00

reci nf o->nul | _pos 2 00 00

reci nfo->type 2 00 00 1 (S1)
reci nfo->l ength 2 00 01

reci nfo->null _bit 1 02

reci nfo->null _pos 2 00 00

reci nfo->type 2 00 00 12 (S2)
reci nfo->length 2 00 02

reci nfo->null _bit 1 04

reci nfo->null _pos 2 00 00

reci nfo->type 2 00 00 12 (S3)
reci nfo->l ength 2 00 03

reci nfo->null _bit 1 08

reci nfo->null _pos 2 00 00

We are now at offset OxA2 within the file T. MYl . Notice that the value of the third field in the header,
header _| engt h, isOxA2. Anything following this point, up till the first key value, isfiller.

The. MYl Key Values

And now we look at the part which is not the information header: we look at the key values. The key
values are in blocks (MySQL's term for pages). A block contains values from only one index. To contin-

122

The. MYI file

ue our example: thereisablock for the 11 key values, and ablock for the 12 key values.

According to the header information (st at e- >key_r oot above), the |1 block starts at offset 0x0400

in the file, and the 12 block starts at offset 0x0800 in thefile.

At offset 0x0400 in the file, we have this:

Nane Size Dunp From Exanple File
(bl ock header) 2 00 OE

(first key val ue) 2 01 31

(first key pointer) 4 00 00 00 00

(second key val ue) 2 01 33

(second key pointer) 4 00 00 00 02

(j unk) 1010 ..

At offset 0800x in the file, we have this:

Nane Size Dunp From Exanple File
(bl ock header) 2 00 18

(first key val ue) 7 01 61 61 01 62 20 20
(first key pointer) 4 00 00 00 00

(second key val ue) 7 01 61 61 01 62 62 62
(second key pointer) 4 00 00 00 02

(j unk) 1000 ..

From the above illustrations, these facts should be clear:

= size (inclusive)
(first bit of word =
O meaning this is a
B-Tree | eaf, see the
m _test_if_nod nacro)
Value is "1" (0x31).
Pointer is to Record
#0000.

Val ue is "3" (0x33).
Pointer is to Record
#0002.

rest of the 1024-byte
bl ock is unused

= size (inclusive)
Value is "aa/b "
Pointer is to Record
#0000.

Val ue i s "aal bbb"
Pointer is to Record
#0002.

rest of the 1024-byte
bl ock is unused

» Each key contains the entire contents of all the columns, including trailing spaces in CHAR columns.
There is no front truncation. There is no back truncation. (There can be space truncation if key-

seg- >f | ag HA_SPACE_PACK flagison.)

» For fixed-row tables: The pointer is a fixed-size (4-byte) number which contains an ordina row
number. The first row is Record #0000. This item is analogous to the ROWID, or RID (row identifi-
er), which other DBMSs use. For dynamic-row tables: The pointer is an offset in the . MYDfile.

e Thenormal block length is 0x0400 (1024) bytes.

These facts are not illustrated, but are also clear:

* If akey value is NULL, then the first byte is 0x00 (instead of 001 as in the above examples) and
that's al. Even for afixed CHAR(3) column, the size of the key valueisonly 1 byte.

» Initialy the junk at the end of a block is filler bytes, value = OxA5. If MySQL shifts key values up

123

The. MYI file

after a DELETE, the end of the block is not overwritten.

* A normal block is at least 65% full, and typically 80% full. (Thisis somewhat denser than the typical
B-tree algorithm would cause, it is thus because nyi sancthk -r q will make blocks nearly 100%
full.)

» Thereis apool of free blocks, which increases in size when deletions occur. If al blocks have the
same normal block length (1024), then MySQL will always use the same pool.

* The maximum number of keysis 32 (M _MAX_KEY). The maximum number of segmentsin akey is
16 (M _MAX_KEY_SEG). The maximum key length is 500 (M _MAX_KEY_LENGTH). The maim-

um block length is 16384 (M _MAX_KEY_BLOCK_LENGTH). All these MI_... constants are ex-
pressed by #definesin thermyi sandef . h file.

10.1. Myl SAMFiles

Some notes about Myl SAMfile handling:
» If atableis never updated, MySQL will never touch the table files, so it would never be marked as
closed or corrupted.

» If atableis marked readonly by the OS, it will only be opened in readonly mode. Any updates to it
will fail.

e When anormal table is opened for reading by a SELECT, MySQL will open it in read/write mode,
but will not write anything to it.

» A table can be closed during one of the following events:
e Out of spacein table cache
» Someone executed flush tables
« MySQL was shut down
« flush_time expired (which causes an automatic flush-tables to be executed)
* When MySQL opens atable, it checks if the table is clean. If it isn't and the server was started with

the - - myi sam r ecover option, check the table and try to recover it if it's crashed. (The safest
automatic recover option is probably - - myi sam r ecover =BACKUP.)

124

Chapter 11. Myl SAMCompressed Data
File Layout

11.1

11.2

11.3.

This chapter describes the layout for the data file of compressed Myl SAMtables.

Huffman compression

My SAM compression is based on Huffman compression. In his article from 1952 Huffman proved that
his agorithm uses the least possible number of bits to encode a sequence of messages. The number of
bits assigned to each message depends on its probability to appear in the sequence.

Huffman did not specify exactly, what those "messages' are. One could take all possible values - say of
atable column - as "messages’. But if there are too many of them, the code tables could become bigger
than the uncompressed table. One would need to specify every possible value once and the code tree
with its indexes and offsets. Not to forget the effort to step through big binary trees for every value and -
on the encoding side - the comparison of each value against the already collected distinct values.

The usual way to define "Huffman messages’ is to take the possible 256 values, which a byte can ex-
press, as the "messages’. That way the code trees are of limited size. On the other hand, the theoretical
maximum compression is 1:8 (12.5%) in this case.

The nyi sanpack Program

nyi sanpack tries both ways to compress the column values. When starting to analyze the existing un-
compressed data, it collects distinct column values up to alimit of 8KB. If there are more, it falls back to
byte value compression for this column.

This means also that nmyi sanpack may use different algorithms for different columns. Besides a
couple of other tricks, nyi sanpack determines for every column if distinct column value compression
or byte value compression is better. After that it tries to combine byte value compression trees of differ-
ent columns into one or more code trees. This means that finally we may have less code trees than
columns. Therefore the column information in the file header contains the number of the code tree used
for each column. Some columns might not need a code tree at all. This happens for columns which have
the same value in all records.

Record and Blob Length Encoding

Since the compressed data file should be usable for read-only purposes by the MySQL database man-
agement system, every record starts on a byte boundary. Fore easier handling by the system, every re-
cord begins with a length information for the compressed record and a length information for the total
size of all uncompressed blobs of this record. Both lengths are encoded in 1 to 5 bytes, depending on its
value.

A length from 1 to 253 bytes is represented in one byte. A length of 254 to 65536 bytes (64KB) is rep-
resented by three bytes. The first contains the value 254 and the next two bytes contain the plain length.
The low order byte goes first. A length of 65537 to 4294967296 bytes (4GB) is represented by five
bytes. The first contains the value 255 and the next four bytes contain the plain length. The low order
byte goes first.

The encoded compressed record length does not include these length bytes. It tells the number of bytes
which follow behind the length bytes for this record.

125

My | SAMCompressed Data File Layout

11.4. Code Tree Representation

The code trees are binary trees. Every node has exactly two childs. The childs can be leafs or nodes.
Each leaf contains one original, uncompressed value. The nodes do not contain values, but only pointers
to the left and right child. The Huffman codes represent the navigation through the tree. Every left
branch gets a 0 bit, every right branch getsa 1 bit.

The in-memory representation of the trees are two unsigned integers per node. Each describes either a
leaf value or an offset (in unsigned integers) to the child node. To distinguish values from offsets, the
15th bit (decimal value 32768) is set together with offsets. This is safe as the size of the trees is limited
by either having a maximum of 256 elements for byte value compression or 4096 elements for distinct
column value compression.

The representaion of the trees in the compressed data file is aimost the same. But instead of writing all
bits of the unsigned integers, only as many bits are written as are required to represent the highest value

or offset respectively. One more bit per value/offset is written in advance, to distinguish both. The num-
ber of bitsrequired per value and per offset is computed in advance and part of the code tree description.

11.5. Usage of the Index File

While the header of the compressed data file contains a lot of information, there are still some things
which need to be taken fron the index file. These are the number of columns of the table and the length
of each column. The latter is required for columns with suppressed leading spaces or suppressed trailing
Spaces or zeroes.

11.6. nyi sanpack Tricks

As already mentioned, myi sanpack uses some tricks to decrease the amount of data to be encoded.
These cope with leading and trailing spaces or zeroes or with all blank or NULL fields.

| do not describe these in detail here. They do not materialize in the compressed data files other than the
later mentioned field and pack types. They are however important to know for decoding the records.

Detailed Specification of the Decoding:

Below follows the detailed specification of the encoding:

11.7

Datafile fixed header (32 bytes):

byte nmagi c nunber

byte total header length (fixed + columm info + code trees)

byte m ni num packed record | ength

byte nmaxi num packed record | ength

byte total nunber of elements in all code trees

byte total nunber of bytes collected for distinct colum val ues

byte nunber of code trees

byte maxi mum nunber of bytes required to represent record+bl ob | engths
byte nunber of bytes required to represent the conpressed data file length
byte zeroes

ArPRPRPNRARARMDMAD

Column Information. For every column in the table:

5 bits field type
FI ELD_NORVAL 0
FI ELD_SKI P_ENDSPACE 1
FI ELD_SKI P_PRESPACE 2

126

My | SAMCompressed Data File Layout

FI ELD_SKI P_ZERO
FI ELD BLOB

FI ELD_CONSTANT
FI ELD_| NTERVALL
FI ELD_ZERO

FI ELD_VARCHAR

FI ELD_CHECK

ooo~NoOUThWwW

6 bi

ts pack type as a set of flags
PACK_TYPE_SELECTED 1
PACK_TYPE_SPACE_FI ELDS 2
PACK_TYPE_ZERO FI LL 4

5 bits if pack type contains PACK TYPE ZERO FILL
m ni mum nunber of trailing zero bytes in this colum
el se
nunber of bits to encode the nunber of
packed bytes in this colum (length bits)
X bits nunber of the code tree used to encode this colum
X is the mnimum nunber of bits required to represent the highest
tree nunber.

Code Trees. For every tree:

1 bit conpressi on type
0 = byte val ue conpression
8 bits mninumbyte value coded by this tree
9 bits nunber of byte values encoded by this tree
5 bits nunber of bits used to encode the byte val ues
5 bits nunber of bits used to encode offsets to next tree el enents
1 = distinct colum val ue conpression
15 bits nunber of distinct columm val ues encoded by this tree
16 bits length of the buffer with all colum val ues
5 bits nunber of bits used to encode the index of the columm val ue
5 bits nunber of bits used to encode offsets to next tree el enents
For each code tree el enment:
1 bit | S_OFFSET
X bits the announced nunber of bits for either a value or an offset
X bits alignment to the next byte border
I f conpression by distinct colum val ues:
The nunber of 8-bit values that make up the colum val ue buffer

Compressed Records. For every record:

1-5 bytes length of the conpressed record in bytes
1-5 bytes total length of all expanded bl obs of this record
For every col um:
I f pack type includes PACK TYPE SPACE Fl ELDS,
1 bit 1 = spaces only, 0 = not only spaces
In case the filed type is of:
FI ELD_SKI P_ZERO
1 bit 1 = zeroes only, 0 = not only zeroes
In the latter case
X bits the Huffman code for every byte
FI ELD_NORMAL
X bits the Huffman code for every byte
FI ELD_SKI P_ENDSPACE
I f pack type includes PACK TYPE_SELECTED,
1 bit 1 = nmore than min endspace, 0 = not nore
In the former case
X bits nr of extra spaces, x = length_bits

127

My | SAMCompressed Data File Layout

el se
X bits nr of extra spaces, x = length_bits
X bits the Huffman code for every byte
FI ELD_SKI P_PRESPACE
I f pack type includes PACK TYPE_SELECTED
1 bit 1 = nmore than min prespace, 0 = not nore
In the former case
X bits nr of extra spaces, x = length_bits
el se
X bits nr of extra spaces, x = length_bits
X bits the Huffman code for every byte
FI ELD_CONSTANT or FI ELD ZERO or FI ELD CHECK
not hi ng for these
FI ELD | NTERVALL
X bits the Huffrman code for the buffer index of the colum val ue
FI ELD BLOB
1 bit 1 =Dblob is enpty, 0 = not enpty
In the latter case
X bits blob length, x = length bits
X bits the Huffman code for every byte
FI ELD_VARCHAR
1 bit 1 = varchar is enmpty, 0 = not enpty
In the latter case
X bits blob length, x = length_bits
X bits the Huffman code for every byte
X bits alignnent to the next byte border

128

Chapter 12. | nnoDB Record Structure

This page contains:

e A high-altitude "summary" picture of the parts of aMySQL/l nnoDB record structure.
* A description of each part.

 Anexample.

After reading this page, you will know how MySQL/I nnoDB stores a physical record.

12.1. High-Altitude Picture

The chart below shows the three parts of a physical record.

Name Size

Field Start Offsets (F*1) or (F*2) bytes
Extra Bytes 6 bytes

Field Contents depends on content

Legend: Theletter 'F stands for 'Number Of Fields.

The meaning of the partsis asfollows:

» TheFIELD START OFFSETS isalist of numbers containing the information "where afield starts'.
» The EXTRA BYTESisafixed-size header.

e TheFIELD CONTENTS contains the actua data.

An Important Note About The Word " Origin"

The"Origin" or "Zero Point" of arecord is the first byte of the Field Contents --- not the first byte of the
Field Start Offsets. If there is a pointer to a record, that pointer is pointing to the Origin. Therefore the
first two parts of the record are addressed by subtracting from the pointer, and only the third part is ad-
dressed by adding to the pointer.

12.1.1. FIELD START OFFSETS

The Field Start Offsetsis alist in which each entry is the position, relative to the Origin, of the start of
the next field. The entries are in reverse order, that is, thefirst field's offset is at the end of the list.

An example: suppose there are three columns. The first column's length is 1, the second column's length
is 2, and the third column's length is 4. In this case, the offset values are, respectively, 1, 3 (1+2), and 7
(1+2+4). Because values are reversed, a core dump of the Field Start Offsets would look like this:
07, 03, 01.

There are two complications for special cases:

129

| nnoDB Record Structure

e Complication #1: The size of each offset can be either one byte or two bytes. One-byte offsets are
only usable if the total record size is less than 127. There is a flag in the "Extra Bytes" part which
will tell you whether the size is one byte or two bytes.

e Complication #2: The most significant bits of an offset may contain flag values. The next two para-
graphs explain what the contents are.

When The Size Of Each Offset IsOne Byte

o 1bit=0if fieldisnon-NULL, = 1if field is NULL

* 7 bits = the actual offset, a number between 0 and 127
When The Size Of Each Offset s Two Bytes

o 1bit=0if fieldisnon-NULL, = 1if field is NULL
* 1bit=0if field ison same page as offset, = 1 if field and offset are on different pages

e 14 bits = the actual offset, a number between 0 and 16383

It isunlikely that the "field and offset are on different pages' unless the record contains alarge BLOB.

12.1.2. EXTRA BYTES

The Extra Bytes are afixed six-byte header.

Name Size Description

info_bits:

0 1 bit unused or unknown

0 1 bit unused or unknown

deleted_flag 1 bit 1if record is deleted

min_rec_flag 1 bit 1if record is predefined minimum record

n_owned 4 bits number of records owned by this record

heap no 13 hits record's order number in heap of index page

n fields 10 hits number of fieldsin thisrecord, 1 to 1023

lbyte offs flag 1 bit 1if each Field Start Offsets is 1 byte long (this item is
also called the "short” flag)

next 16 bits 16 bits pointer to next record in page

TOTAL 48 hits

Total sizeis48 hits, which is six bytes.

If you're just trying to read the record, the key bit in the Extra Bytes is 1lbyte offs flag --- you need to
know if 1byte offs flagis1 (i.e.: "short 1-byteoffsets’) or O (i.e.: "2-byte offsets").

Given a pointer to the Origin, | nnoDB finds the start of the record as follows:

130

| nnoDB Record Structure

o Let X = n_fields (the number of fields is by definition equa to the number of entries in the Field
Start Offsets Table).

« If 1byte offs flag equals 0, then let X = X * 2 because there are two bytes for each entry instead of
just one.

* Let X =X + 6, because the fixed size of Extra Bytesis6.

e The start of therecord is at (pointer value minus X).

12.1.3. FIELD CONTENTS

The Field Contents part of the record has all the data. Fields are stored in the order they were defined in.
There are no markers between fields, and there is no marker or filler at the end of arecord.

Here's an example.

* | made atable with this definition:

CREATE TABLE T
(FI ELD1 VARCHAR(3), FIELD2 VARCHAR(3), FIELD3 VARCHAR(3))
Type=Il nnoDB;

To understand what follows, you must know that table T has six columns --- not three --- because
| nnoDB automatically added three "system columns' at the start for its own housekeeping. It hap-
pens that these system columns are the row ID, the transaction ID, and the rollback pointer, but their
values don't matter now. Regard them as three black boxes.

e | put somerowsin thetable. My last three | NSERT statements were:
INSERT INTO T VALUES (' PP, '"PP', 'PP);

INSERT INTOT VALUES ('Q, 'Q, 'Q);
I NSERT INTO T VALUES ('R, NULL, NULL);

e | ran Borland's TDUMP to get a hexadecimal dump of the contents of \ nysql \ dat a\ i bdat a1,
which (in my case) isthe MySQL/I nnoDB datafile (on Windows).

Here is an extract of the dump:

Address Valuesin Hexadecimal Valuesin ASCI|

0D4280: 00 00 2D 00 84 4F 4F 4F 4F 4F 4F 4F|..-.. O000000OQ0. .
4F 4F 19 17

0D4290: 15 13 0C 06 00 00 78 OD 02 BF 00 00|...... Xovooot. !
00 00 04 21

0D42A0: 00 00 00 00 09 2A 80 00 OO 00 2D 00])..... *.o...-..PPP
84 50 50 50

0D42B0O: 50 50 50 16 15 14 13 OC 06 00 00 80|PPP.............
0D 02 E1 00

0D42C0: 00 00 00 04 22 00 00 00 00 09 2B 80(...."..... oL
00 00 00 2D

0D42D0: 00 84 51 51 51 94 94 14 13 0C 06 00|..QQQ

131

| nnoDB Record Structure

00 88 0D 00

0D42EQ:
2C 80 00 00

74 00 00 00 00 04 23 00 00 OO 00 09]t...

OD42F0: 00 2D 00 84 52 00 00 00 00 0O 00 00|.-..

00 00 00 OO0

A reformatted version of the dump, showing only the relevant bytes, looks like this (I've put a line break

after each field and added |abels):

Reformatted Hexadecimal Dump

19 17 15 13 0C 06 Field Start Offsets /* First Row */
00 00 78 0D 02 BF Extra Bytes

00 00 00 00 04 21 System Col um #1

00 00 00 00 09 2A System Col umtmm #2

80 00 00 00 2D 00 84 System Col um #3

50 50 Fieldl 'PP

50 50 Field2 'PP

50 50 Field3 'PP

16 15 14 13 0C 06 Field Start Ofsets /* Second Row */
00 00 80 OD 02 E1 Extra Bytes

00 00 00 00 04 22 System Col um #1

00 00 00 00 09 2B 80 System Col um #2

00 00 00 2D 00 84 System Col um #3

51 Fieldl 'Q

51 Field2 'Q

51 Field3 'Q

94 94 14 13 0C 06 Field Start Ofsets /* Third Row */
00 00 88 OD 00 74 Extra Bytes

00 00 00 00 04 23 System Col um #1

00 00 00 00 09 2C System Col um #2

80 00 00 00 2D 00 84 System Col um #3

52 Fieldl 'R

You won't need explanation if you followed everything I've said, but I'll add helpful notes for the three
trickiest details.

Helpful Notes About "Field Start Offsets":

Notice that the sizes of the record's fields, in forward order, are: 6, 6, 7, 2, 2, 2. Since each offset is
for the start of the "next" field, the hexadecimal offsets are 06, Oc (6+6), 13 (6+6+7), 15 (6+6+7+2),
17 (6+6+7+2+2), 19 (6+6+7+2+2+2). Reversing the order, the Field Start Offsets of the first record
are: 19, 17, 15, 13, Oc, 06.

Helpful Notes About "Extra Bytes':

Look at the Extra Bytes of thefirst record: 00 00 78 0D 02 BF. The fourth byteisOD hexa-
deci mal ,whichis1101 bi nary ...the110isthelast bitsof n_fields (110 bi nary is6 which
isindeed the number of fields in the record) and the final 1 bit is 1byte offs flag. The fifth and sixth
bytes, which contain 02 BF, constitute the "next" field. Looking at the original hexadecimal dump,
at address 0D42BF (which is position 02BF within the page), you'll see the beginning bytes of Sys-
tem Column #1 of the second row. In other words, the "next" field points to the "Origin" of the fol-
lowing row.

Helpful Notes About NULLSs:

132

| nnoDB Record Structure

For the third row, | inserted NULLsin FIELD2 and FIELD3. Therefore in the Field Start Offsets the
top bit is on for these fields (the values are 94 hexadeci mal , 94 hexadeci mal , instead of
14 hexadeci mal, 14 hexadeci mal). And the row is shorter because the NULLs take no
space.

12.2. Where to Look For More Information

References:

The most relevant | nnoDB source-code filesarer enDrec. c,renDrec. i c,andr enDr ec. h inthe
r em("Record Manager") directory.

133

Chapter 13. | nnoDB Page Structure

| nnoDB stores all records inside a fixed-size unit which is commonly called a"page" (though | nnoDB
sometimes callsit a"block" instead). Currently all pages are the same size, 16KB.

A page contains records, but it also contains headers and trailers. I'll start this description with a high-

altitude view of a page's parts, then I'll describe each part of a page. Finally, I'll show an example. This
discussion deals only with the most common format, for the leaf page of adatafile.

13.1. High-Altitude View

An | nnoDB page has seven parts:

* Fil Header

e Page Header

* Infimum + Supremum Records

» User Records

* Free Space

e Page Directory

* Fil Traler

Asyou can see, apage has two header/trailer pairs. The inner pair, "Page Header" and "Page Directory",
are mostly the concern of the \page program group, while the outer pair, "Fil Header" and "Fil Trailer",
are mostly the concern of the \fil program group. The "Fil" header also goes goes by the name of "File
Page Header".

Sandwiched between the headers and trailers, are the records and the free (unused) space. A page always
begins with two unchanging records called the Infimum and the Supremum. Then come the user records.

Between the user records (which grow downwards) and the page directory (which grows upwards) there
is space for new records.

13.1.1. Fil Header

The Fil Header has eight parts, as follows:

Name Size Remarks

FI L_PAGE_SPACE 4 41D of the spacethe pageisin

FI L_PAGE_OFFSET |4 ordinal page number from start of space

FI L_PAGE _PREV 4 offset of previous pagein key order

FI L_PAGE_NEXT 4 offset of next page in key order

FI L_PAGE LSN 8 log serial number of page's latest log record

FI L_PAGE_TYPE 2 current defined types are: FI L_PAGE_| NDEX,
FI L_PAGE_UNDO LGOG, FI L_PAGE_| NODE,
FI L_PAGE_| BUF_FREE LI ST

FI L_PAGE_FI LE_FL |8 "the file has been flushed to disk at least up to thislsn" (log seria

134

I nnoDB Page Structure

USH _LSN number), valid only on the first page of thefile
FI L_PAGE_ARCH LO |4 the latest archived log file number a the time that
G_NO FI L_PAGE_FI LE_FLUSH_LSNwaswritten (in the log)

 FIL_PACE SPACE is a necessary identifier because different pages might belong to different
(table) spaces within the same file. The word "space" is generic jargon for either "log" or "ta-
blespace”.

« FIL_PAGE PREV and FI L_PAGE_NEXT are the page's "backward" and "forward" pointers. To
show what they're about, I'll draw atwo-level B-tree.

Everyone has seen a B-tree and knows that the entries in the root page point to the leaf pages. (I in-
dicate those pointers with vertical '[' bars in the drawing.) But sometimes people miss the detail that
leaf pages can aso point to each other (I indicate those pointers with a horizontal two-way pointer
'<-->' in the drawing). This feature alows | nnoDB to navigate from leaf to leaf without having to
back up to the root level. Thisis a sophistication which you won't find in the classic B-tree, which is
why | nnoDB should perhaps be called a B+-tree instead.

e Thefields FI L_PAGE_FI LE_FLUSH_LSN, FI L_PAGE_PREV, and FI L_PAGE_NEXT dl have
to do with logs, so I'll refer you to my article “How Logs Work With MySQL And InnoDB” on
devarticles.com

e FIL_PACGE FILE FLUSH LSNandFI L_PAGE_ARCH LOG NOarevalid only for the first page
of adatafile.

13.1.2. Page Header

The Page Header has 14 parts, asfollows:

Name Size Remarks
PAGE N DIR _SLOTS |2 number of directory slots in the Page Directory part; initial value =
2

PAGE_HEAP_TOP record pointer to first record in heap
PAGE_N HEAP number of heap records; initial value =2
PAGE_FREE record pointer to first free record

PAGE _GARBAGE "number of bytesin deleted records"

PAGE_LAST_| NSERT
PAGE_DI RECTI ON
PAGE_N_DI RECTI ON

record pointer to the last inserted record
either PAGE_LEFT, PAGE_RI GHT, or PAGE_NO DI RECTI ON

number of consecutive inserts in the same direction, e.g. "last 5
were al to the left"

NININIDNINIDNDN

135

I nnoDB Page Structure

PAGE_N RECS 2 number of user records

PAGE_MAX_TRX_ID |8 the highest ID of atransaction which might have changed a record
on the page (only set for secondary indexes)

PAGE_LEVEL 2 level within theindex (O for aleaf page)

PAGE | NDEX I D 8 identifier of the index the page belongs to

PAGE BTR SEG LEA |10 "file segment header for the leaf pagesin a B-tree" (thisisirrelev-

F ant here)

PAGE_BTR_SEG TOP |10 "file segment header for the non-leaf pages in a B-tree" (thisisir-
relevant here)

(Note: I'll clarify what a"heap" iswhen | discuss the User Records part of the page.)

Some of the Page Header parts require further explanation:

*» PAGE_FREE:

Records which have been freed (due to deletion or migration) are in a one-way linked list. The
PAGE_FREE pointer in the page header points to the first record in the list. The "next" pointer in the
record header (specifically, in the record's Extra Bytes) points to the next record in the list.

PAGE_DI RECTI ONand PAGE_N_DI RECTI ON:

It's useful to know whether inserts are coming in a constantly ascending sequence. That can affect
I nnoDB's efficiency.

PAGE_HEAP_TOP and PAGE_FREE and PAGE_LAST_| NSERT:

Warning: Like al record pointers, these point not to the beginning of the record but to its Origin (see
the earlier discussion of Record Structure).

PAGE_BTR_SEG LEAF and PAGE_BTR_SEG TOP:

These variables contain information (space ID, page number, and byte offset) about index node file
segments. | nnoDB uses the information for allocating new pages. There are two different variables
because | nnoDB allocates separately for leaf pages and upper-level pages.

13.1.3. The Infimum and Supremum Records

"Infimum" and "supremum" are real English words but they are found only in arcane mathematical treat-
ises, and in | nnoDB comments. To | nnoDB, an infimum is lower than the the lowest possible real
value (negative infinity) and a supremum is greater than the greatest possible real value (positive infin-
ity). | nnoDB sets up an infimum record and a supremum record automatically at page-create time, and
never deletes them. They make a useful barrier to navigation so that "get-prev" won't pass the beginning
and "get-next" won't pass the end. Also, the infimum record can be adummy target for temporary record

locks.

The | nnoDB code comments distinguish between "the infimum and supremum records" and the "user

records’ (all other kinds).

It's sometimes unclear whether | nnoDB considers the infimum and supremum to be part of the header
or not. Their sizeisfixed and their position is fixed, so | guess so.

136

I nnoDB Page Structure

13.1.4. User Records

In the User Records part of a page, you'll find all the records that the user inserted.

There are two ways to navigate through the user records, depending whether you want to think of their
organization as an unordered or an ordered list.

An unordered list is often called a "heap”. If you make a pile of stones by saying "whichever one | hap-
pen to pick up next will go on top" --- rather than organizing them according to size and colour --- then
you end up with a heap. Similarly, | nnoDB does not want to insert new rows according to the B-tree's
key order (that would involve expensive shifting of large amounts of data), so it inserts new rows right
after the end of the existing rows (at the top of the Free Space part) or wherever there's space left by a
deleted row.

But by definition the records of a B-tree must be accessible in order by key value, so there is a record
pointer in each record (the "next" field in the Extra Bytes) which points to the next record in key order.
In other words, the records are a one-way linked list. So | nnoDB can access rows in key order when
searching.

13.1.5. Free Space

| think it's clear what the Free Space part of apageis, from the discussion of other parts.

13.1.6. Page Directory

The Page Directory part of a page has a variable number of record pointers. Sometimes the record point-
ers are called "dots' or "directory slots'. Unlike other DBMSs, | nnoDB does not have a slot for every
record in the page. Instead it keeps a sparse directory. In a fullish page, there will be one slot for every
Six records.

The dots track the records' logical order (the order by key rather than the order by placement on the
heap). Therefore, if therecordsare' A' 'B'° 'F' ' D the dots will be (pointer to '"A")
(pointer to '"B') (pointer to 'D) (pointer to 'F').Becausethedotsareinkey
order, and each slot has a fixed size, it's easy to do a binary search of the records on the page via the
dots.

(Since the Page Directory does not have a slot for every record, binary search can only give arough pos-
ition and then | nnoDB must follow the "next" record pointers. | nnoDB's "sparse dots' policy also ac-

counts for the n_owned field in the Extra Bytes part of arecord: n_owned indicates how many more re-
cords must be gone through because they don't have their own slots.)

13.1.7. Fil Trailer

The Fil Trailer has one part, as follows:

Name Size Remarks

FI L_PAGE END LSN |8 low 4 bytes = checksum of page, last 4 bytes = same as
FI L_PAGE_LSN

The final part of a page, the fil trailer (or File Page Trailer), exists because | nnoDB's architect worried
about integrity. It's impossible for a page to be only half-written, or corrupted by crashes, because the
log-recovery mechanism restores to a consistent state. But if something goes really wrong, then it's nice
to have a checksum, and to have avalue at the very end of the page which must be the same as a value at
the very beginning of the page.

137

I nnoDB Page Structure

13.2. Example

For this example, | used Borland's TDUMP again, as | did for the earlier chapter on Record Format. This
iswhat a page looked like:

Address Valuesin Hexadecimal Valuesin ASCI|I

0D4000: 00 00 00 00 00 00 00 35 FF FF FF FF|....... 5.
FF FF FF FF

0D4010: 00 00 00 00 00 00 E2 64 45 BF 00 00|....... dE.......
00 00 00 00

0D4020: 00 00 00 00 00 00 00 05 02 F5 00 12|................
00 00 00 00

0D4030: 02 E1 00 02 00 OF OO0 10 00 00 00 OO0|..........cvvn..
00 00 00 00

0D4040: 00 00 00 OO OO0 OO OO 00 00 14 00 O0................
00 00 00 00

0D4050: 00 02 16 B2 00 00 OO0 00 00 00 OO0 O2|......
15 F2 08 01

0D4060: 00 00 03 00 89 69 6E 66 69 6D 75 6D)..... infimm...
00 09 05 00

0D4070: 08 03 00 00 73 75 70 72 65 6D 75 6D|....supremum*"..
00 22 1D 18

0D4080: 13 0OC 06 00 00 10 OD 00 B7 00 00 O0|................
00 04 14 00

0D4090: 00 00 00 09 1D 80 00 00 00 2D 00 84|......... -. . AAAA
41 41 41 41

OD40A0: 41 41 41 41 41 41 41 41 41 41 41 1F|AAAAAAAAAAA
1B 17 13 0C

OD7FEO: 00 00 00 00 00O OO0 00 OO0 00 00 00 OOf............... t
00 00 00 74

OD7FFO: 02 47 01 AA 01 OA 00 65 3A EO AA 71|.G....e:..Q...d
00 00 E2 64

Let's skip past the first 38 bytes, which are Fil Header. The bytes of the Page Header start at location
0d4026 hexadeci nal :

L ocation Name Description
00 05 PAGE_N DI R_SLOTS |There are5 directory dots.
02 F5 PAGE_HEAP_TOP At location 0402F5, not shown, is the beginning

of free space. Maybe a better name would have
been PAGE_HEAP_END.

00 12 PAGE_N_HEAP There are 18 (hexadecimal 12) recordsin the page.
00 00 PAGE FREE There are zero free (deleted) records.

00 00 PAGE_GARBAGE There are zero bytesin deleted records.

02 E1 PAGE _LAST | NSERT |The last record was inserted at location 02EL, not

shown, within the page.

138

13.3.

I nnoDB Page Structure

00 02 PAGE_DI RECTI ON A glance at pageOpage.h will tell you that 2 is the
#defined value for PAGE_RI GHT.

00 OF PAGE_N_DI RECTI ON |Thelast 15 (hexadecimal OF) inserts were al done
"to the right" because | was inserting in ascending
order.

00 10 PAGE_N_RECS There are 16 (hexadecimal 10) user records. Notice

that PAGE_N_RECS is smaller than the earlier
field, PAGE_N_HEAP.

00 00 00 00 OO|PAGE_MAX TRX_ID

00 00

00 00 PAGE_LEVEL Zero because thisis aleaf page.
00 00 00 OO0 OO|PAGE_INDEX_ID Thisisindex number 20.

00 00 14

00 00 00 00 O0O0|PAGE_BTR SEG LEA
00 00 02 16 B2 F

00 00 00 00 OO|PAGE BTR SEG TCP
00 00 02 15 F2

Immediately after the page header are the infimum and supremum records. Looking at the "Values In
ASCII" column in the hexadecimal dump, you will see that the contents are in fact the words "infimum"
and "supremum" respectively.

Skipping past the User Records and the Free Space, many bytes later, is the end of the 16KB page. The

values shown there are the two trailers.

e Thefirst trailer (00 74, 02 47, 01 AA, 01 OA, 00 65) isthe page directory. It has 5
entries, because the header field PAGE_N DI R_SLOTS saysthereare 5.

* Thenexttrailer 3A EO AA 71, 00 00 E2 64)isthefil trailer. Notice that the last four bytes,
00 00 E2 64, appeared beforein the fil header.

Where to Look For More Information

Refer ences:

The most relevant | nnoDB source-code files are pageOpage.c, pageOpage.ic, and
pageOpage. h inthe page directory.

139

Chapter 14. Error Messages

14.1.

This chapter describes how error messages are defined and how to add the capability of generating error
messages to atable handler.

Adding New Error Messages to MySQL

The procedure for adding error messages depends on which version of MySQL you are using:

» Before MySQL 5.0.3, error messages are stored in er r nsg. t xt files in the language directories
under sql / share. That is, the files have names like czech/ errnsg. t xt, dani sh/ er -
rmeg. t xt, and so forth, and each one is language-specific. Each of these language-specific files
must contain a line for each error message, so adding a new message involves adding a line to the
errmsg. t xt file for every language. The procedure involves adding the English message to the
engl i sh/ errmsg. t xt fileand running a script that adds the message to the other language-spe-
cific files. Trandators may translate the message in other er r msg. t xt fileslater.

» Beginning with MySQL 5.0.3, error messages are stored in asingleer r nsg. t xt fileinthesql /
shar e directory, and it contains the error messages for all languages. The messages are grouped by
error symbol. For each symbol, there must be an English message, and messages can be present for
other languages as well. If there is no message for a given language, the English version is used.

For al versions, the conp_er r program compiles the text error message file or files into language-spe-
cificerrmsg. sys filesthat each are located in the appropriate language directory under sql / shar e.
In MySQL 5.0.3 and up, conp_er r aso generates a number of header filesinthei ncl ude directory.
The MySQL build processrunsconp_er r automatically.

Note: You should observe some general considerations regarding error messages that apply no matter

your version of MySQL:

» The maximum error message length is M\YSQL_ ERRMSG_SI ZE = 512. Ensure by using constructs
suchas" %s- . 64s" that there are no buffer overflows!

* You should never add new parameters (such as %s) to existing error messages. Error messages are
aways supposed to be backward compatible. If a parameter is added, older serverswill crash.

For versions of MySQL older than 5.0.3, use the following procedure to add new error messages.

1. Openthefilesql / shar e/ english/ errnsg.txt inan editor.

2. Add new error messages at the end of this file. Each message should be on a separate line, and it
must be quoted within double quote (™ ") characters. By convention, every message line except the
last should end with acomma (',) following the second double quote.

3. For each new error message, add a#def i ne lineto thei ncl ude/ mysqgl d_error. h file be-
forethelast line (#def i ne ER_ERROR_MESSAGES).

4. Adjust the value of ER_ ERROR_MESSAGES to the new number of error messages.
5. Add the defined error symbolstoi ncl ude/ sqgl _st at e. h. Thisfile contains the SQL states for

the error messages. If the new errors don't have SQL states, add a comment instead. Note that this
file must be kept sorted according to the value of the error number. That is, although the

140

Error Messages

sqgl _stat e. h file might not contain an entry for every symbol in nysql d_error. h, those
entries that are present in sql _st at e. h must appear in the same order as those for the corres-
ponding entriesinmysql d_error. h.

6. Go tothesql directory in atermina window and type ./ add_errnmsg N. This will copy the
last N error messages from shar e/ engl i sh. t xt to all the other language filesin shar e/ .

7. Trandate the error message for those languages that you know by editing the files shar e/ | an-
guage/ errnsg. t xt.

8. Make a full build (configure + make). A nake all is insufficient to build the sql /
share/ */ errmsg. sys files.

For MySQL 5.0.3 and up, the procedure for adding error messages is less tedious. Y ou need edit only a
single message text file, and it's not necessary to edit * . h header files. Instead, conp_er r generates
the header files for you based on the contents of the message text file.

Theerrnsg. t xt file begins with some lines that define general characteristics of error messages, fol-
lowed by sections for particular messages. The following example shows a partial listing of an er -
rimsg. t xt file. (Thel anguages lineiswrapped here; it must be given al on oneline.)

| anguages czech=cze | atin2, danish=dan latinl, dutch=nla latinl

engli sh=eng | atinl, estonian=est latin7, french=fre |atinl, gernan=ger
I atinl, greek=greek greek, hungarian=hun latin2, italian=ita latinl

j apanese=jpn ujis, japanese-sjis=jps sjis, korean=kor euckr

nor wegi an- ny=norwegi an-ny | atinl, norwegi an=nor |atinl, polish=po

| ati n2, portuguese=por |atinl, romani an=rum | atin2, russian=rus

koi 8r, serbian=serbian cpl250, slovak=slo |atin2, spanish=spa |atinl
swedi sh=swe | atinl, ukral nian=ukr koi 8u

def aul t -1 anguage eng
start-error-nunber 1000
ER_HASHCHK

"hashchk"

eng
ER_NI SAMCHK
eng "i sanchk"

ER_NO
cze "NE"
dan "NEJ"
nla " NEE"
eng " NO'

est "ElI"

Indentation is significant. Unless otherwise specified, |eading whitespace should not be used.
The “grammar” of theer r nsg. t xt filelookslike this:

| anguages | angspec [, |angspec] ... ;

start-error-nunber nunber

def aul t -1 anguage | angcode

error-nessage-sect I on
error-nessage-section

141

Error Messages

The | anguages line lists the languages for which language-specific er r nsg. sys files should be
generated. A language specification | angspec inthel anguages line has this syntax:

I angspec: | angnane=l angcode | angchar set

| angnare is the long language name, | angcode is the short language code, and | angchar set is
the character set to use for error messages in the language.

The def aul t - | anguage line specifies the short language code for the default language. (If there is
no tranglation into a given language for a given error message, the message from the default language
will be used.)

Thestart-error-nunber lineindicates the number to be assigned to the first error message. Mes-
sages that follow the first one are numbered consecutively from this value.

Each er r or - nessage- sect i on begins with a line that lists an error (or warning) symbol, option-
ally followed by one or two SQLSTATE values. The error symbol must begin with ER_ for an error or
WARN _ for a warning. Lines following the error symbol line provide language-specific error messages
that correspond to the error symbol. Each message line consists of atab, a short language code, a space,
and the text of the error message within double quote ("' ") characters. Presumably, there must be a mes-
sage in the default language. There may be message trandlations for other languages. Order of message
lines within a section does not matter. If no trandation is given for a given language, the default lan-
guage message will be used. The following example defines several language trandlations for the
ER_BAD_FI ELD_ERROR symbol:

ER _BAD FI ELD _ERROR 42S22 S0022
dan "Ukendt kol onne '%.64s' i tabel %"
nla "Onbekende kolom'%.64s' in %"
eng "Unknown colum "% .64s' in '%.64s""
est "Tundmatu tulp '%.64s' '%.64s'-s"
fre "Chanmp '%.64s' inconnu dans %"
ger "Unbekanntes Tabellenfeld '%.64s' in %.64s"

In the preceding example, two SQLSTATE values are given following the error symbol (42S22,
S0022). Internally (in sql / sql _st at e. c), these are known as odbc_st ate and j dbc_st at e.
Currently, only the first appears ever to be used.

Message strings for a given language must be written in the character set indicated for that language in
the | anguages line. For example, the language information for Japanese in that line is j apan-
ese=j pn uji s, so messages with alanguage code of j pn must be written in the uj i s character set.
Y ou might need to be careful about the editor you use for editing the er r msg. t xt file. For example,
thereisareport that using Enmacs will mangle thefile, whereasvi will not.

Within a message string, C-style escape sequences are allowed:

\W\ #

\"# "

\n # new ine

\N# N, where Nis an octal nunber
\X # X, for any other X

A line beginning with a'#' character is taken as a comment. Comments and blank lines are ignored.

Use the following procedure to add new error messages:

1. Toadd anew language translation for an existing error message, find the section for the appropriate

142

Error Messages

error symbol. Then add a new message line to the section. For example:
Before:

ER_UNKNOAN_COLLATI ON
eng "Unknown collation: '%.64s""
ger "Unbekannte Kollation: '%.64s""
por "Col |l ati on desconhecida: '%.64s""

After (with anew Spanish trandlation):

ER_UNKNOAN_COLLATI ON
eng "Unknown collation: '%.64s"'"
ger "Unbekannte Kollation: '9%.64s""
por "Col |l ati on desconhecida: '%.64s""
spa "Col |l ati on desconocida: '%.64s""

2. To add an entirely new error message, go to the end of the err msg. t xt file. Add a new error
symbol line, followed by a message line for the default language, and message lines for any transla-
tions that you can supply.

3. Make a full build (configure + make). A nake all is insufficient to build the sql /
share/ */ errmsg. sys files.

conp_err will generatethe er r nsg. sys files, aswell as the header filesnysql d_error. h,
mysqgl d_er nane. h,andsql _state. hinthei ncl ude directory.

Be aware that if you make a mistake editing a message text file, conp_err prints acryptic error mes-
sage and gives you no other feedback. For example, it does not print the input line number where it
found a problem. It's up to you to figure this out and correct the file. Perhaps that is not a serious diffi-
culty: errnmsg. t xt tends to grow by gradua accretion, so if an error occurs when conp_err pro-
cesses it, the problem islikely due to whatever change you just made.

14.2. Adding Storage Engine Error Messages

To add error messages for table handlers, the following example may be helpful.

Purpose: Implement the handl er: : get_error_nessage function as
ha_f ederated: : get_error_nessage to return the handler-specific error message.

Example:

1. When an error occurs you return an error code. (It should not be in the range of those that HA ERR
uses, which currently is 120-159.)

2. When handl er:: print_error iscaled to convert the handler error code to a MySQL error
code, it will enter the default label of theswi t ch(error) statement:

handl er. cc: 1721
defaul t:

/* The error was "unknown" to this function.

Ask handler if it has got a nessage for this error */
bool tenporary= FALSE;

String str;

tenporary= get _error_nessage(error, &str);

143

Error Messages

if (!str.is_enpty())

const char* engine= table_type();
if (tenporary)

ny_error (ER_GET_TEMPORARY_ERRMSG, MYF(0), error, str.ptr(), engine);
el se

my_error (ER_GET_ERRMSG, MYF(0), error, str.ptr(), engine);

}

el se
my_error (ER GET_ERRNQ, errflag, error);
DBUG VO D_RETURN;
}
}

3. Thusthe handl er::get_error_message is caled and you can return the handler-specific
error message, which is either a static error message that you retrieve from an error/string array, or
aadynamic one that you format when the error occurs.

When you have returned the error message it will be passed to MySQL and formatted as Got err or
%l ' % .100s' from %s. For example:
Got error 788 'Could not connect to renpte server fed.bb.pl' from FEDERATED

The Got error % part will be returned in the user's selected language, but the handler-specific one
will use English (unless the handler supports returning the handler error message in the user's selected

language).

144

Chapter 15. Annotated List of Files In
the MySQL Source Code Distribution

15.1.

Thisis a description of the files that you get when you download the source code of MySQL. This de-
scription begins with a list of the main directories and a short comment about each one. Then, for each
directory, in aphabetical order, a longer description is supplied. When a directory contains significant
program files, alist of each C program is given along with an explanation of its intended function.

Directory Listing

Directory --- Short Comment

* bdb --- The Berkeley Database table handler

» BitKeeper --- BitKeeper administration (not part of the source distribution)
» BUILD --- Frequently used build scripts

e client --- Client library

* cmd-line-utils --- Command-line utilities (libedit and readline)

e config --- Some files used during build

» dbug --- Fred Fish's dbug library

e Docs --- Preliminary documents about internals and new modules; will eventualy be moved to the
mysqgldoc repository

* extra--- Some minor standalone utility programs
* heap --- The HEAP table handler

* include --- Header (*.h) files for most libraries; includes all header files distributed with the MySQL
binary distribution

* innobase --- The Innobase (InnoDB) table handler

» libmysgl --- For producing MySQL as alibrary (e.g. aWindows .DLL)
* libmysgl_r --- For building a thread-safe libmysql library

* libmysgld --- The MySQL Server as an embeddable library

e man --- Some user-contributed manual pages

* myisam --- The Myl SAMtable handler

e myisammrg --- The Myl SAMMerge table handler

* mysgl-test --- A test suite for mysgld

* mysys--- MySQL system library (Low level routines for file access etc.)

145

Annotated List of Filesin the MySQL Source
Code Distribution

* ndb--- MySQL Cluster

* netware --- Filesrelated to the Novell NetWare version of MySQL

* NEW-RPMS --- Directory to place RPMs while making a distribution
* 032 --- Routines for working with the OS/2 operating system

» pstack --- Process stack display (not currently used)

* regex --- Henry Spencer's Regular Expression library for support of REGEXP function
» SCCS--- Source Code Control System (not part of source distribution)
» soripts--- SQL batches, e.g. mysqglbug and mysgl_install_db

* server-tools --- instance manager

* gl --- Programs for handling SQL commands; the "core" of MySQL

* sgl-bench --- The MySQL benchmarks

* ggl-common --- Some .c files related to sl directory

e SSL --- Secure Sockets Layer; includes an example certification one can use to test an SSL (secure)
database connection

e strings --- Library for C string routines, e.g. atof, strchr

» support-files --- Files used to build MySQL on different systems

* tests--- TestsinPerl andinC

» tools--- mysglmanager.c (tool under development, not yet useful)

e VC++Files--- Includes this entire directory, repeated for VC++ (Windows) use
e vio--- Virtual /O Library

e Zlib--- Datacompression library, used on Windows

15.1.1. The bdb Directory

The Berkeley Database table handler.

The Berkeley Database (BDB) is maintained by Sleepycat Software. MySQL AB maintains only a few
small patches to make BDB work better with MySQL.

The documentation for BDB is available at http://www.sleepycat.com/docs/. Since it's reasonably thor-
ough documentation, a description of the BDB program filesis not included in this document.

15.1.2. The Bi t Keeper Directory

BitK eeper administration.

Bitkeeper administration is not part of the source distribution. This directory may be present if you
downloaded the MySQL source using BitKeeper rather than via the mysgl.com site. The files in the Bit-

146

http://www.sleepycat.com/docs/

Annotated List of Filesin the MySQL Source
Code Distribution

Keeper directory are for maintenance purposes only --- they are not part of the MySQL package.

The MySQL Reference Manual explains how to use Bitkeeper to get the MySQL source. Please see ht-
tp://www.mysgl.com/doc/en/installing-source-tree.html. for more information.

15.1.3. The BUI LD Directory

Frequently used build scripts.

This directory contains the build switches for compilation on various platforms. There is a subdirectory
for each set of options. The main ones are:

» apha

e iab4

» pentium (with and without debug or bdb, etc.)

e solaris

15.1.4. The cl i ent Directory

Client library.

The client library includes mysql . cc (the source of the nysql executable) and other utilities. Most of
the utilities are mentioned in the MySQL Reference Manual. Generally these are standalone C programs
which one runsin "client mode", that is, they call the server.

The C program filesin the directory are:

e get password.c --- ask for a password from the console

* mysgl.cc--- "The MySQL command tool"

* mysgladmin.cc --- maintenance of MySQL databases

» mysglcheck.c --- check al databases, check connect, etc.

» mysgldump.c --- dump table's contents as SQL statements, suitable to backup a MySQL database
* mysglimport.c --- import text filesin different formats into tables

* mysglmanager-pwgen.c --- pwgen stands for "password generation” (not currently maintained)

* mysglmanagerc.c --- entry point for mysgl manager (not currently maintained)

* mysglshow.c --- show databases, tables or columns

* mysqgltest.c --- test program used by the mysgl-test suite, mysql-test-run

15.1.5. The conf i g Directory

Macros for use during build.

147

http://www.mysql.com/doc/en/installing-source-tree.html
http://www.mysql.com/doc/en/installing-source-tree.html

Annotated List of Filesin the MySQL Source
Code Distribution

Thereis asingle subdirectory: \ ac- macr os. All the filesin it have the extension .m4, which is a nor-
mal expectation of the GNU autoconf tool.

15.1.6. Thecnd- 1l i ne-util s Directory

Command-line utilities (libedit and readline).
There are two subdirectories: \ readl i ne and \ | i bedi t . All the files here are "non-MySQL" files,

in the sense that MySQL AB didn't produce them, it just uses them. It should be unnecessary to study
the programs in these files unless you are writing or debugging a tty-like client for MySQL, such as

nysql . exe.

The \ r eadl i ne subdirectory contains the files of the GNU Readline Library, "a library for reading
lines of text with interactive input and history editing”. The programs are copyrighted by the Free Soft-
ware Foundation.

The\l i bedit (library of edit functions) subdirectory has files written by Christos Zoulas. They are
distributed and modifed under the BSD License. These files are for editing the line contents.

These are the program filesin the \libedit subdirectory:

» chared.c --- character editor

* common.c --- common editor functions

* dl.c--- editline interface functions

* emacs.c --- emacs functions

» fgetln.c--- getline

» hist.c --- history access functions

» history.c --- more history access functions

» key.c --- procedures for maintaining the extended-key map
e map.c --- editor function definitions

* parse.c --- parse an editline extended command

e prompt.c --- prompt printing functions

* read.c --- terminal read functions

* readline.c--- read line

» refresh.c --- "lower level screen refreshing functions®
e search.c --- "history and character search functions'

» dgig.c--- for signa handling

e strlcpy.c --- string copy

e term.c --- "editor/termcap-curses interface”

» tokenizer.c --- Bourne shell line tokenizer

148

Annotated List of Filesin the MySQL Source
Code Distribution

e tty.c--- for atty interface
* unvis.c --- reverse effect of vis.c
* vi.c--- commands used when in the vi (editor) mode

* vis.c --- encode characters

15.1.7. The dbug Directory

Fred Fish's dbug library.

Thisis not really part of the MySQL package. Rather, it's a set of public-domain routines which are use-
ful for debugging MySQL programs. The MySQL Server and all .c and .cc programs support the use of
this package.

How it works: One inserts a function call that begins with DBUG_* in one of the regular MY SQL pro-
grams. For example, in get_password.c, you will find thisline:

DBUG ENTER("get tty password");

at the start of aroutine, and thisline:

DBUG RETURN(ny_strdup(to, MYF(MY_FAE))) ;

at the end of the routine. These lines don't affect production code. Features of the dbug library include
extensive reporting and profiling (the latter has not been used by the MySQL team).

The C programsin this directory are:

» dbug.c --- The main module

» dbug_anayze.c --- Reads afile produced by trace functions
e examplel.c --- A tiny example

* example2.c --- A tiny example

e example3.c --- A tiny example

» factorial.c --- A tiny example

e main.c --- A tiny example

* my_main.c --- MySQL-specific main.c variant

e sanity.c --- Declaration of avariable

15.1.8. The Docs Directory

Preliminary documents about internals and new modules, which will eventually be moved to the mysqgl-
doc repository.

This directory doesn't have much at present that's very useful to the student. The really important "docu-

149

Annotated List of Filesin the MySQL Source
Code Distribution

mentation” files are in a separate BitK eeper repository now. There are instructions in the MySQL Refer-
ence Manual, in the section "Installing from the Development Source Tree", for getting the DocBook
XML fileswhich are the ultimate source of MySQL documentation.

These sub-directories are part of this directory:

* books --- .gif images and empty .txt files; no real information

* mysgl-logos --- MySQL-related logos, some of them moving

e Support --- various files for generating texinfo/docbook documentation

In the main directory, you'll find some .txt files related to the methods that MySQL uses to produce its
printed and html documents, and odd bits in various languages. Of great historical importance isi n-
ternal s.texi --- The "MySQL Internals’ document. This is just a stub now. The internals docu-
mentation, which is what you're reading right now, is no longer a .texi file. The true source is

(DocBook) internalsxml, and internals.texi merely has some instructions for how you can find intern-
alx.xml.

15.1.9. The ext r a Directory

Some minor standalone utility programs.

These programs are all standalone utilities, that is, they have a main() function and their main role is to
show information that the MySQL server needs or produces. Most are unimportant. They are as follows:
e charset2html.c --- checks your browser's character set

» comp_err.c --- makes error-message files from a multi-language source

e my_print_defaults.c --- print parameters from my.ini files. Can also be used in scripts to enable pro-
cessing of my.ini files.

* mysgl_waitpid.c --- wait for a program to terminate. Useful for shell scripts when one needs to wait
until a process terminates.

* perror.c--- "print error" --- given error number, display message
» replace.c --- replace strings in text files or pipe

» resolve stack_dump.c --- show symbolic information from a MySQL stack dump, normally found in
the mysgl.er file

» resolveip.c --- convert an | P address to a hostname, or vice versa

15.1.10. The heap Directory

The HEAP (MEMORY) table handler.

All the MySQL table handlers (i.e. the handlers that MySQL itself produces) have files with similar
names and functions. Thus, this (heap) directory contains a lot of duplication of the myisam directory
(for the Myl SAMtable handler). Such duplicates have been marked with an "*" in the following list. For
example, you will find that \ heap\ hp_extra. ¢ has a close equivaent in the myisam directory
(\ nyi sam mi _ext r a. c) with the same descriptive comment. (Some of the differences arise because

150

Annotated List of Filesin the MySQL Source
Code Distribution

HEAP has different structures. HEAP does not need to use the sort of B-tree indexing that | SAM and
Myl SAM use; instead there is a hash index. Most importantly, HEAP is entirely in memory. File-l/O
routines lose some of their vitality in such a context.)

» hp_block.c --- Read/write a block (i.e. a page)

» hp_clear.c --- Remove all recordsin the table

» hp_close.c --- * close database

* hp_create.c --- * create atable

* hp_delete.c--- * deletearow

» hp_extra.c --- * for setting options and buffer sizes when optimizing

» hp_hash.c --- Hash functions used for saving keys

* hp_info.c --- * Information about database status

» hp_open.c --- * open database

* hp_panic.c --- * the hp_panic routine, for shutdowns and flushes

* hp_rename.c --- * rename atable

» hp_rfirst.c--- * read first row through a specific key (very short)

* hp_rkey.c--- * read record using a key

* hp_rlast.c --- * read last row with same key as previously-read row

* hp_rnext.c --- * read next row with same key as previously-read row

* hp_rprev.c --- * read previous row with same key as previously-read row

e hp_rrnd.c --- * read arow based on position

* hp_rsame.c --- * find current row using positional read or key-based read

e hp_scan.c--- * read al rows sequentially

* hp_static.c --- * static variables (very short)

» hp_testl.c--- * testing basic functions

* hp_test2.c --- * testing database and storing results

* hp_update.c --- * update an existing row

* hp_write.c --- * insert a new row

There are fewer files in the heap directory than in the myisam directory, because fewer are necessary.

For example, there is no need for a \myisam\mi_cache.c equivalent (to cache reads) or a
\myisam\mi_log.c equivalent (to log statements).

15.1.11. The i ncl ude Directory

151

Annotated List of Filesin the MySQL Source
Code Distribution

Header (*.h) files for most libraries; includes all header files distributed with the MySQL binary distri-
bution.

These files may be included in C program files. Note that each individual directory will also have its
own *.h files, for including in its own *.c programs. The *.h files in the include directory are ones that
might be included from more than one place.

For example, the mysys directory contains a C file named rijndagl.c, but does not include rijndael.h. The
include directory contains rijndael .h. Looking further, you'll find that rijndael.h is also included in other
places: by my aes.c and my_aes.h.

Theinclude directory contains 55 *.h (header) files.

15.1.12. The i nnobase Directory

The Innobase (InnoDB) table handler.

A full description of these files can be found elsewhere in this document.

15.1.13. The l i bnmysqgl Directory

The MySQL Library, Part 1.

The files here are for producing MySQL as alibrary (e.g. a Windows DLL). Theideais that, instead of
producing separate mysql (client) and mysql d (server) programs, one produces a library. Instead of
sending messages, the client part merely calls the server part.

The |l i brrysql files are split into three directories: | i bnysql (this one), | i bnysql _r (the next
one), and | i bnysql d (the next one after that).

The "library of mysgl" has some client-connection modules. For example, as described in an earlier sec-
tion of this manual, there is adiscussion of | i brmysql / 1i bnysqgl . ¢ which sends packets from the
client to the server. Many of the entriesin the | i brmysql directory (and in the following | i bnysql d
directory) are 'symlinks on Linux, that is, they arein fact pointersto filesin other directories.

The program files on this directory are:

» conf_to_src.c --- hasto do with charsets

e dll.c---initiaization of the dll library

* errmsg.c --- English error messages, compare \mysys\errors.c
e get_password.c --- get password

* libmysgl.c --- the code that implements the MySQL API, i.e. the functions a client that wants to con-
nect to MySQL will call

* manager.c --- initialize/connect/fetch with MySQL manager

15.1.14. The I i bnysqgl _r Directory

The MySQL Library, Part 2.

Thereisonly onefile here, used to build a thread-safe libmysql library:

152

Annotated List of Filesin the MySQL Source
Code Distribution

* makefile.am

15.1.15. The | i bnysql d Directory

The MySQL library, Part 3.

The Embedded MySQL Server Library. The product of | i bnysql d is not a client/server affair, but a
library. There is awrapper to emulate the client calls. The program files on this directory are:

e libmysgld.c --- The called side, compare the mysgld.exe source

» lib_sgl.c --- Emulate the vio directory's communication buffer

15.1.16. The man Directory

Some user-contributed manual pages
These are user-contributed "man" (manual) pages in a special markup format. The format is described in

a document with a heading like "man page for man" or "macros to format man pages' which you can
find in aLinux directory or on the Internet.

15.1.17. The nyi samDirectory

The Myl SAMtable handler.

The C filesin this subdirectory come in six main groups:

» ft*.cfiles--- ft standsfor "Full Text", code contributed by Sergei Golubchik

» mi*.cfiles--- mi standsfor "My Isam", these are the main programs for Myisam

» myisam*.cfiles --- for example, "myisamchk" utility routine functions source

» rt*.cfiles--- rt standsfor "rtree", some code was written by Alexander Barkov

» gp*.cfiles--- sp stands for "spatial”, some code was written by Ramil Kalimullin

e sort.c--- thisisasinglefile that sorts keys for index-create purposes

The "full text" and "rtree" and "spatial" program sets are for special purposes, so this document focuses
only on the mi*.c "myisam" C programs. They are:

e mi_cache.c --- for reading records from a cache

* mi_changed.c --- asingle routine for setting a"changed" flag (very short)

e mi_check.c --- for checking and repairing tables. Used by the myisamchk program and by the
MySQL server.

* mi_checksum.c --- calculates a checksum for arow

* mi_close.c --- close database

153

Annotated List of Filesin the MySQL Source
Code Distribution

mi_create.c --- create atable

mi_dbug.c --- support routines for use with "dbug" (see \dbug description)
mi_delete.c --- delete arow

mi_delete all.c --- delete al rows

mi_delete table.c --- delete atable (very short)

mi_dynrec.c --- functions to handle space-packed records and blobs
mi_extra.c --- setting options and buffer sizes when optimizing
mi_info.c --- return useful base information for an open table
mi_key.c --- for handling keys

mi_keycache.c --- for handling key caches

mi_locking.c --- lock database

mi_log.c --- save commands in alog file which myisamlog program can read. Can be used to exactly
replay a set of changesto atable.

mi_open.c --- open database

mi_packrec.c --- read from a data file compresed with myisampack
mi_page.c --- read and write pages containing keys

mi_panic.c --- the mi_panic routine, probably for sudden shutdowns
mi_preload.c --- preload indexes into key cache

mi_range.c --- approximate count of how many records lie between two keys
mi_rename.c --- rename atable

mi_rfirst.c --- read first row through a specific key (very short)
mi_rkey.c --- read arecord using a key

mi_rlast.c --- read last row with same key as previously-read row
mi_rnext.c --- read next row with same key as previously-read row
mi_rnext_same.c --- same as mi_rnext.c, but abort if the key changes
mi_rprev.c --- read previous row with same key as previously-read row
mi_rrnd.c --- read arow based on position

mi_rsame.c --- find current row using positional read or key-based read
mi_rsamepos.c --- positional read

mi_scan.c --- read all rows sequentially

mi_search.c --- key-handling functions

154

Annotated List of Filesin the MySQL Source
Code Distribution

e mi_static.c --- static variables (very short)

e mi_statrec.c --- functions to handle fixed-length records
* mi_testl.c --- testing basic functions

e mi_test2.c --- testing database and storing results

* mi_test3.c --- testing locking

* mi_unigue.c --- functions to check if arow is unique

* mi_update.c --- update an existing row

e mi_write.c --- insert anew row

15.1.18. The nyi samnmt g Directory

MyI SAMMerge table handler.

As with other table handlers, you'll find that the * . ¢ filesin the nyi ssammr g directory have counter-
partsin the myi samdirectory. In fact, this general description of anyi sammr g program is almost al-
ways true: The myi sanmr g function checks an argument, the myi sanmr g function formulates an ex-
pression for passing to anyi samfunction, the nyi sammr g callsanyi samfunction, the nyi sam
r g function returns.

These are the 22 files in the myi sammr g directory, with notes about the nyi samfunctions or pro-
grams they're connected with:

* myrg_close.c--- mi_close.c

¢ myrg_create.c --- mi_create.c

* myrg_delete.c --- mi_delete.c / delete last-read record

* myrg_extra.c --- mi_extra.c/ "extrafunctions we want to do ..."

* myrg_info.c --- mi_info.c/ display information about amymergefile

» myrg_locking.c --- mi_locking.c / lock databases

* myrg_open.c --- mi_open.c/ open a Myl SAMMERGE table

* myrg_panic.c --- mi_panic.c/ closein ahurry

* myrg_queue.c --- read record based on akey

e myrg_range.c --- mi_range.c/ find recordsin arange

» myrg_rfirst.c --- mi_rfirst.c/ read first record according to specific key

» myrg_rkey.c--- mi_rkey.c/ read record based on a key

* myrg_rlast.c --- mi_rlast.c/ read last row with same key as previous read

e myrg_rnext.c --- mi_rnext.c / read next row with same key as previous read

155

Annotated List of Filesin the MySQL Source
Code Distribution

* myrg_rnext_same.c --- mi_rnext_same.c / read next row with same key

* myrg_rprev.c --- mi_rprev.c/ read previous row with same key

* myrg_rrnd.c --- mi_rrnd.c / read record with random access

e myrg_rsame.c --- mi_rsame.c/ call mi_rsame function, see \myisam\mi_rsame.c

e myrg_static.c --- mi_static.c / static variable declaration

* myrg_update.c --- mi_update.c / call mi_update function, see \myisam\mi_update.c

e myrg_write.c --- mi_write.c / call mi_write function, see \myisam\mi_write.c

15.1.19. The nysql -t est Directory

A test suite for nysql d.

The directory has a READVE file which explains how to run the tests, how to make new tests (in files
with the filename extension * . t est), and how to report errors.

There are four subdirectories:

* \misc --- contains one minor Perl program

e \ndb --- for MySQL Cluster tsts

* \r--- contains *.result, i.e. "what happened” filesand *.required, i.e. "what should happen" file

e \std data--- contains standard data for input to tests

* \t--- contains tests

Thereare400 * . t est filesinthe\t subdirectory. Primarily these are SQL scripts which try out afea
ture, output a result, and compare the result with what's required. Some samples of what the test files
check are: latinl_de comparisons, date additions, the HAVI NG clause, outer joins, openSSL, load data,
logging, truncate, and UNI ON.

There are other tests in these directories:

» ggl-bench

* tests

15.1.20. The nysys Directory

MySQL system library. Low level routines for file access and so on.

There are 125 *.c programs in this directory:

e array.c --- Dynamic array handling

» charset.c --- Using dynamic character sets, set default character set, ...

156

Annotated List of Filesin the MySQL Source
Code Distribution

charset-def.c --- Inclcude character setsin the client using

checksum.c --- Calculate checksum for a memory block, used for pack_isam
default.c --- Find defaults from *.cnf or *.ini files

default_modify.c --- edit option file

errors.c --- English text of global errors

hash.c --- Hash search/compare/free functions "for saving keys"

list.c --- Double-linked lists

make-conf.c --- "Make a charset .conf file out of a ctype-charset.c file"
md5.c --- MD5 ("Message Digest 5") algorithm from RSA Data Security

mf_brkhant.c --- Prevent user from doing a Break during critical execution (not used in MySQL; can
be used by standalone Myl SAMapplications)

mf_cache.c --- "Open atemporary file and cache it with io_cache"
mf_dirname.c --- Parse/convert directory names

mf_fn_ext.c --- Get filename extension

mf_format.c --- Format afilename

mf_getdate.c --- Get date, return in yyyy-mm-dd hh:mm:ss format
mf_iocache.c --- Cached read/write of filesin fixed-size units
mf_iocache2.c --- Continuation of mf_iocache.c

mf_keycache.c --- Key block caching for certain file types
mf_keycaches.c --- Handling of multiple key caches
mf_loadpath.c --- Return full path name (no ..\ stuff)

mf_pack.c --- Packing/unpacking directory names for create purposes
mf_path.c --- Determine where a program can find its files
mf_gsort.c --- Quicksort

mf_gsort2.c --- Quicksort, part 2 (allows the passing of an extra argument to the sort-compare
routine)

mf_radix.c --- Radix sort

mf_same.c --- Determine whether filenames are the same

mf_sort.c --- Sort with choice of Quicksort or Radix sort

mf_soundex.c --- Soundex algorithm derived from EDN Nov. 14, 1985 (pg. 36)

mf_strip.c --- Strip trail spaces from astring

157

Annotated List of Filesin the MySQL Source
Code Distribution

mf_tempdir.c --- Initialize/find/free temporary directory

mf_tempfile.c --- Create atemporary file

mf_unixpath.c --- Convert filename to UNIX-style filename

mf_util.c --- Routines, #fdef'd, which may be missing on some machines
mf_wcomp.c --- Comparisons with wildcards

mf_wfile.c --- Finding files with wildcards

mulalloc.c --- Malloc many pointers at the same time

my_access.c --- Check if file or path is accessible

my_aes.c --- AES encryption

my_alarm.c --- Set avariable value when an alarm is received

my_alloc.c --- malloc of results which will be freed simultaneously
my_append.c --- one file to another

my_hit.c --- smallest X where 2"X >= value, maybe useful for divisions
my_bitmap.c --- Handle uchar arrays as large bitmaps

my_chsize.c --- Truncate fileif shorter, elsefill with afiller character
my_clock.c --- Time-of-day ("clock()") function, with OS-dependent #ifdef's
my_compress.c --- Compress packet (see also description of \zlib directory)
my_copy.c --- Copy files

my_crc32.c --- Include \zlib\crc32.c

my_create.c --- Createfile

my_delete.c --- Delete file

my_div.c --- Get file's name

my_dup.c --- Open a duplicated file

my_error.c --- Return formatted error to user

my_file.c --- See how many open files we want

my_fopen.c --- File open

my_fstream.c --- Streaming file read/write

my_gethostbyname.c --- Thread-safe version of standard net gethostbyname() func
my_gethwaddr.c --- Get hardware address for an interface

my_getopt.c --- Find out what options are in effect

158

Annotated List of Filesin the MySQL Source
Code Distribution

my_getsystime.c --- Time-of-day functions, portably

my_getwd.c --- Get working directory

my_handler.c --- Compare two keysin various possible formats

my_init.c --- Initialize variables and functions in the mysys library
my_largepage.c --- Gets the size of large pages from the OS

my_lib.c --- Compare/convert directory names and file names

my_lock.c --- Lock part of afile

my_lockmem.c --- "Allocate a block of locked memory™

my_lread.c --- Read a specified number of bytes from afile into memory
my_lwrite.c --- Write a specified number of bytes from memory into afile
my_malloc.c --- Malloc (memory allocate) and dup functions

my_messnc.c --- Put out a message on stderr with "no curses’

my_mkdir.c --- Make directory

my_mmap.c --- Memory mapping

my_net.c --- Thread-safe version of net inet_ntoa function

my_netware.c --- Functions used only with the Novell Netware version of MySQL
my_once.c --- Allocation / duplication for "things we don't need to free"
my_open.c --- Open afile

my_os2cond.c --- OS2-specific: "A simple implementation of posix conditions’
my_os2dirsrch.c --- OS2-specific: Emulate a Win32 directory search
my_os2difen.c --- OS2-specific: Emulate UNIX dynamic loading
my_os2file64.c --- OS2-specific: For Fileb4bit setting

my_os2mutex.c --- OS2-specific: For mutex handling

my_os2thread.c --- OS2-specific: For thread handling

my_os2tls.c --- OS2-specific: For thread-local storage

my_port.c --- OS/machine-dependent porting functions, e.g. AlX-specific my_ulonglong2double()
my_pread.c --- Read a specified number of bytes from afile

my_pthread.c --- A wrapper for thread-handling functions in different OSs
my_quick.c --- Read/write (labeled a"quicker" interface, perhaps obsolete)

my_read.c --- Read a specified number of bytes from afile, possibly retry

159

Annotated List of Filesin the MySQL Source
Code Distribution

my_realloc.c --- Reallocate memory allocated with my_alloc.c (probably)
my_redel.c --- Rename and delete file

my_rename.c --- Rename without delete

my_seek.c --- Seek, i.e. point to a spot within afile

my_semaphore.c --- Semaphore routines, for use on OS that doesn't support them
my_sleep.c --- Wait n microseconds

my_static.c --- Static variables used by the mysys library

my_symlink.c --- Read a symbolic link (symlinks are a UNIX thing, | guess)
my_symlink2.c --- Part 2 of my_symlink.c

my_sync.c --- Sync datain fileto disk

my_thr_init.c --- initialize/allocate "all mysys & debug thread variables’
my_wincond.c --- Windows-specific: emulate Posix conditions
my_windac.c --- Windows NT/2000 discretionary access control functions
my_winsem.c --- Windows-specific: emulate Posix threads
my_winthread.c --- Windows-specific: emulate Posix threads

my_write.c --- Write a specified number of bytesto afile

ptr_cmp.c --- Point to an optimal byte-comparison function

gueues.c --- Handle priority queues as in Robert Sedgewick's book

raid2.c --- RAID support (the true implementation isin raid.cc)

rijndael .c --- "Optimized ANSI C code for the Rijndael cipher (now AES")
safemalloc.c --- A version of the standard malloc() with safety checking
shal.c --- Implementation of Secure Hashing Algorithm 1

string.c --- Initialize/append/free dynamically-sized strings; see also sgl_string.cc in the /sgl direct-
ory

testhash.c --- Standal one program: test the hash library routines
test_charset.c --- Standalone program: display character set information
test_dir.c --- Standalone program: placeholder for "test all functions" idea
test_fn.c --- Standalone program: apparently tests a function

test xml.c --- Standal one program: test XML routines

thr_alarm.c --- Thread alarms and signal handling

thr_lock.c --- "Read and write locks for Posix threads"

160

Annotated List of Filesin the MySQL Source
Code Distribution

e thr_mutex.c --- A wrapper for mutex functions

» thr_rwlock.c --- Synchronizes the readers' thread locks with the writer's lock

e tree.c --- Initialize/search/free binary trees

» typelib.c--- Find a string in a set of strings; returns the offset to the string found

You can find documentation for the main functions in these files elsewhere in this document. For ex-
ample, the main functionsin my_get wd. ¢ are described thus:

"int my_getwd _A((string buf, uint size, nyf Ml ags));

int my_setwd _A((const char *dir, nyf MFl ags));
Get and set working directory."

15.1.21. The ndb Directory

The ndb (MySQL Cluster) source code.

MySQL 's shared-nothing in-memory feature is practically a DBMS by itself. We generally use the term
"ndb" when referring to the storage engine, and the term "MySQL Cluster" when referring to the com-
bination of the storage engine and the rest of the MySQL facilities.

The sub-directories within ndb are:

* bin--- Two script files

» config --- Files needed for building

» demos --- Demonstration scripts

» docs--- A doxygen output and a .txt file

» home--- Some scripts and .pl files

* include--- The.hfiles

o lib--- empty

» ndbapi-examples --- Examples for the API
e src--- The.cppfiles

o test--- Filesfor testing

» tools--- Programs for testing select, drop, and so on

15.1.22. The net war e Directory

Files related to the Novell NetWare version of MySQL.
There are 43 files on this directory. Most have filename extensions of *. def ,*. sql ,or*. c.

The twenty-eight * . def filesareal from Novell Inc. They contain import or export symbols. (. def is
a common filename extension for "definition".)

161

Annotated List of Filesin the MySQL Source
Code Distribution

Thethree* . sql filesare short scripts of SQL statements used in testing.

These arethe five *.cfiles, all from Novell Inc.:

* libmysglmain.c --- Only one function: init_available charsets()
* my_manage.c --- Standal one management utility

* mysgl_instal_db.c --- Compare \scripts\mysgl_install_db.sh

* mysgl_test run.c --- Short test program

* mysgld_safe.c --- Compare \scripts\imysgld_safe.sh
Perhaps the most important files are:

* netware/BUILD/*patch --- NetWare-specific build instructions and switches (compare the files in
the BUILD directory)

For instructions about basic instalation, see "Deployment Guide For NetWare AMP' at: ht-
tp://devel oper.novell.com/ndk/whitepapers/namp.htm

15.1.23. The NEW RPMS Directory

Directory to place RPMs while making a distribution.

This directory is not part of the Windows distribution. It is a temporary directory used during RPM
builds with Linux distributions. Y ou only seeit after you've done a"build".

15.1.24. The 0s2 Directory

Routines for working with the OS2 operating system.

The files in this directory are the product of the efforts of three people from outside MySQL: Y uri
Dario, Timo Maier, and John M Alfredsson. Thereareno . C program filesin this directory.

The contents of \os2 are:

* A Readme.Txtfile
* An\include subdirectory containing .h fileswhich are for OS/2 only

» Filesused in the build process (configuration, switches, and one .obj)

The README file refers to MySQL version 3.23, which suggests that there have been no updates for
MySQL 4.0 for this section.

15.1.25. The pst ack Directory

Process stack display (not currently used).

This is a set of publicly-available debugging aids which all do pretty well the same thing: display the

162

http://developer.novell.com/ndk/whitepapers/namp.htm
http://developer.novell.com/ndk/whitepapers/namp.htm

Annotated List of Filesin the MySQL Source
Code Distribution

contents of the stack, along with symbolic information, for a running process. There are versions for
various object file formats (such as ELF and IEEE-695). Most of the programs are copyrighted by the
Free Software Foundation and are marked as "part of GNU Binutils".

In other words, the pstack files are not really part of the MySQL library. They are merely useful when
you re-program some MY SQL code and it crashes.

15.1.26. The r egex Directory

Henry Spencer's Regular Expression library for support of REGEXP function.

This is the copyrighted product of Henry Spencer from the University of Toronto. It's a fairly-
well-known implementation of the requirements of POSIX 1003.2 Section 2.8. The library is bundlied
with Apache and is the default implementation for regular-expression handling in BSD Unix. MySQL's
Monty Widenius has made minor changes in three programs (debug.c, engine.c, regexec.c) but this is
not a MySQL package. MySQL calls it only in order to support two MySQL functions: REGEXP and
RLIKE.

Some of Mr Spencer's documentation for the regex library can be found in the README and WHATS
NEW files.

One MySQL program which uses regex is\cmd-line-utils\libedit\search.c

This program calls the 'regcomp’ function, which is the entry point in \regex\regexp.c.

15.1.27. The SCCS Directory

Source Code Control System (not part of source distribution).

You will see this directory if and only if you used BitKeeper for downloading the source. The files here
are for BitKeeper administration and are not of interest to application programmers.

15.1.28. The scri pt s Directory

SQL batches, e.g. mysglbug and mysqgl_install_db.

The *. sh filename extension stands for "shell script”". Linux programmers use it where Windows pro-
grammerswould usea* . bat (batch filename extension).

Some of the *. sh files on thisdirectory are:

» fill_help_tables.sh --- Create help-information tables and insert

» make binary_distribution.sh --- Get configure information, make, produce tar
* msgl2mysgl.sh --- Convert (partly) mSQL programs and scripts to MySQL

e mysglbug.sh --- Create a bug report and mail it

* mysgld_multi.sh --- Start/stop any humber of mysgld instances

* mysgld safe-watch.sh --- Start/restart in safe mode

* mysgld_safe.sh --- Start/restart in safe mode

e mysgldumpslow.sh --- Parse and summarize the slow query log

163

Annotated List of Filesin the MySQL Source
Code Distribution

» mysglhotcopy.sh --- Hot backup

* mysgl_config.sh --- Get configuration information that might be needed to compile a client
» mysgl_convert_table format.sh --- Conversion, e.g. from | SAMto Myl SAM

* mysgl_explain_log.sh --- Put alog (made with - - | og) into aMySQL table

» mysgl_find_rows.sh --- Search for queries containing <r egexp>

» mysgl_fix_extensions.sh --- Renames some file extensions, not recommended

o mysgl_fix_privilege tables.sh --- Fix nmysql . user etc. when upgrading. Can be safely run during
any upgrade to get the newest MySQL privilege tables

e mysgl_instal_db.sh --- Create privilege tables and func table

* mysgl_secure_installation.sh --- Disallow remote root login, eliminate test, etc.
e mysgl_setpermission.sh --- Aid to add users or databases, sets privileges

* mysgl_tableinfo.sh --- Putsinfo re MySQL tablesinto aMySQL table

e mysgl_zap.sh --- Kill processes that match pattern

15.1.29. The ser ver -t ool s Directory

The instance manager.

Quoting from the README file within this directory: "Instance Manager - manage MySQL instances
locally and remotely. File description: mysglmanager.cc - entry point to the manager, main, op-
tions.{h,cc} - handle startup options. manager.{ h,cc} - manager process. mysgl_connection.{h,cc} -
handle one connection with mysgl client. See also instance manager architecture description in mysqgl-
manager.cc.

15.1.30. The sqgl Directory

Programs for handling SQL commands. The "core" of MySQL.

Thesearethe. ¢ and. cc filesinthesql directory:

» derror.cc --- read language-dependent message file
e des key file.cc --- load DES keys from plaintext file
» discover.cc --- Functions for discovery of frm file from handler

« field.cc --- "implement classes defined in fi el d. h" (long); defines all storage methods MySQL
uses to store field information into records that are then passed to handlers

» field_conv.cc --- functionsto copy data between fields
» filesort.cc --- sort aresult set, using memory or temporary files

» frm_crypt.cc --- contains only one short function: get _crypt _for_frm

164

Annotated List of Filesin the MySQL Source
Code Distribution

gen_lex_hash.cc --- Knuth's algorithm from Vol 3 Sorting and Searching, Chapter 6.3; used to
search for SQL keywordsin aquery

gstream.cc --- GTextReadStream, used to read GIS objects
handler.cc --- handler-calling functions

hash _filo.cc --- static-sized hash tables, used to store info like hostname -> ip tables in a FIFO man-
ner

ha_berkeley.cc --- Handler: BDB

ha_blackhole.cc --- Handler: Black Hole

ha federated.cc --- Handler: Federated

ha_heap.cc --- Handler: Heap

ha_innodb.cc --- Handler: InnoDB

ha_myisam.cc --- Handler: MylSAM

ha_myisammrg.cc --- Handler: (MylSAM MERGE)
ha_ndbcluster.cc --- Handler: NDB

hostname.cc --- Given IP, return hostname

init.cc --- Init and dummy functions for interface with unireg
item.cc --- Item functions

item_buff.cc --- Buffersto save and compare item values
item_cmpfunc.cc --- Definition of all compare functions
item_create.cc --- Create an item. Used by | ex. h.
item_func.cc --- Numerical functions

item_geofunc.cc --- Geometry functions

item_row.cc --- Row items for comparing rows and for I N on rows
item_strfunc.cc --- String functions

item_subselect.cc --- Subqueries

item_sum.cc --- Set functions (SUM) , AVH) , etc.)
item_strfunc.cc --- String functions

item_subselect.cc --- Item subquery

item_timefunc.cc --- Date/time functions, e.g. week of year
item_unig.cc --- Empty file, here for compatibility reasons

key.cc --- Functions to create keys from records and compare a key to akey in arecord

165

Annotated List of Filesin the MySQL Source
Code Distribution

lock.cc --- Locks

log.cc --- Logs

log_event.cc --- Log event (abinary log consists of a stream of log events)
matherr.c --- Handling overflow, underflow, etc.

mf_iocache.cc --- Caching of (sequential) reads and writes

mysqgld.cc --- Source for nysqgl d. exe; includes the mai n() program that starts mysql d, hand-
ling of signals and connections

mf_decimal.cc --- New decimal and numeric code

my_lock.c --- Lock part of a file (like / nysys/ nmy_| ock. c, but with timeout handling for
threads)

net_serv.cc --- Read/write of packets on a network socket

nt_servc.cc --- Initialize/register/remove an NT service

opt_range.cc --- Range of keys

opt_sum.cc --- Optimize functionsin presence of (implied) GROUP BY
parse file.cc --- Text .frm files management routines

password.c --- Password checking

procedure.cc --- Procedure interface, as used in SELECT * FROM Tabl e_name PROCEDURE
ANALYSE()

protocol.cc --- Low level functions for PACKING data that is sent to client; actual sending done
withnet _serv. cc

protocol_cursor.cc --- Low level functions for storing data to be sent to the MySQL client
records.cc --- Functions for easy reading of records, possible through a cache
repl_failsafe.cc --- Replication fail-save (not yet implemented)

set_var.cc --- Set and retrieve MySQL user variables

slave.cc --- Procedures for aslave in a master/dave (replication) relation
sp.cc --- DB storage of stored procedures and functions

sp_cache.cc --- For stored procedures

sp_head.cc --- For stored procedures

Sp_pcontext.cc --- For stored procedures

sp_rcontext.cc --- For stored procedures

spatial.cc --- Geometry stuff (lines, points, etc.)

sgl_acl.cc --- Functions related to ACL security; checks, stores, retrieves, and deletes MySQL user
level privileges

166

Annotated List of Filesin the MySQL Source
Code Distribution

sgl_analyse.cc --- Implements the PROCEDURE ANALYSE() , which analyzes a query result and
returns the ‘optimal’ data type for each result column

sgl_base.cc --- Basic functions needed by many modules, like opening and closing tables with table
cache management

sgl_cache.cc --- SQL query cache, with long comments about how caching works

sgl_class.cc --- SQL class; implements the SQL base classes, of which THD (THREAD object) is
the most important

sgl_client.cc --- A function called by my_net_init() to set some check variables
sgl_crypt.cc --- Encode / decode, very short

sgl_db.cc --- Create / drop database

sgl_delete.cc --- The DELETE statement

sgl_derived.cc --- Derived tables, with long comments

sgl_do.cc --- The DO statement

sgl_error.cc --- Errors and warnings

sgl_handler.cc --- Implements the HANDL ER interface, which gives direct access to rowsin Myl SAM
and | nnoDB

sgl_help.cc --- The HEL P statement
sgl_insert.cc --- The | NSERT statement

sgl_lex.cc --- Does lexical analysis of a query; i.e. breaks a query string into pieces and determines
the basic type (number, string, keyword, etc.) of each piece

sgl_list.cc --- Only list_node end of_list, short (the rest of the list class is implemented in
sql _list.h)

sgl_load.cc --- The LOAD DATA statement

sgl_manager.cc --- Maintenance tasks, e.g. flushing the buffers periodically; used with BDB table
logs

sgl_map.cc --- Memory-mapped files (not yet in use)
sgl_olap.cc --- ROLLUP

sgl_parse.cc --- Parse an SQL statement; do initial checks and then jump to the function that should
execute the statement

sgl_prepare.cc --- Prepare an SQL statement, or use a prepared statement
sgl_rename.cc --- Renametable

sgl_repl.cc --- Replication

sgl_select.cc --- Select and join optimization

sgl_show.cc --- The SHOWSstatement

167

Annotated List of Filesin the MySQL Source
Code Distribution

* gl_state.c --- Functions to map mysgld errno to sglstate

» ggl_string.cc --- String functions: alloc, realloc, copy, convert, etc.
* sgl_tablecc--- The DROP TABLE and ALTER TABLE statements
* gl_test.cc --- Some debugging information

» ggl_trigger.cc --- Triggers

e ggl_udf.cc --- User-defined functions

* sgl_union.cc --- The UNI ON operator

* ggl_update.cc --- The UPDATE statement

* sgl_view.cc--- Views

» stacktrace.c --- Display stack trace (Linux/Intel only)

» strfunc.cc --- String functions

* table.cc --- Table metadata retrieval; read the table definition from a. f r mfile and storeit in a TA-
BLE object

e thr_malloc.cc --- Thread-safeinterfaceto/ nysys/ my_al | oc. ¢
+ time.cc --- Date and time functions

» udf_example.cc --- Examplefile of user-defined functions

e uniques.cc --- Function to handle quick removal of duplicates

* unireg.cc --- Create aunireg form file (.frm) from aFl ELD and field-info struct

15.1.31. The sgl - bench Directory

The MySQL Benchmarks.

This directory has the programs and input files which MySQL uses for its comparisons of MySQL, Post-
greSQL, mSQL, Solid, etc. Since MySQL publishes the comparative results, it's only right that it should
make available all the material necessary to reproduce all the tests.

There are five subdirectories and sub-subdirectories;

» \Comments --- Comments about results from tests of Access, Adabas, etc.

* \Data\ATIS--- . t xt filescontaining input datafor the"ATIS' tests

« \Data\Wisconsin--- . t xt files containing input datafor the "Wisconsin" tests
* \Results--- old test results

¢ \Results-win32 --- old test results from Windows 32-bit tests

There are twenty-four * . sh (shell script) files, which involve Perl programs.

168

Annotated List of Filesin the MySQL Source
Code Distribution

Therearethree* . bat (batch) files.

Thereis one README file and one TODO file.

15.1.32. The sgl - common Directory

Threefiles: client.c, my_time.c, pack.c. You will file symlinks to these filesin other directories.

15.1.33. The SSL Directory

Secure Sockets Layer; includes an example certification one can use test an SSL (secure) database con-
nection.

This isn't a code directory. It contains a short note from Tonu Samuel (the NOTES file) and seven

* . pemfiles. PEM stands for "Privacy Enhanced Mail" and is an Internet standard for adding security to
electronic mail. Finally, there are two short scripts for running clients and servers over SSL connections.

15.1.34. The st ri ngs Directory

The string library.

Many of the files in this subdirectory are equivaent to well-known functions that appear in most C
string libraries. For those, there is documentation available in most compiler handbooks.

On the other hand, some of the files are MySQL additions or improvements. Often the MySQL changes
are attempts to optimize the standard libraries. It doesn't seem that anyone tried to optimize for recent
Pentium class processors, though.

The .Cfilesare:

» bchange.c --- short replacement routine written by Monty Wideniusin 1987
* bcmp.c --- binary compare, rarely used

* bcopy-duff.c --- block copy: attempt to copy memory blocks faster than cmemcpy
» Dfill.c --- bytefill, to fill abuffer with (length) copies of abyte

* bmove.c --- block move

* bmove512.c --- "should be the fastest way to move a multiple of 512 bytes"
* bmove _upp.c --- bmove.c variant, starting with last byte

» bzero.c --- something like bfill with an argument of O

» conf_to_src.c --- reading a configuration file

* ctype*.c --- string handling programs for each char type MySQL handles

* decimal.c --- for decimal and numeric conversions

» do_ctype.c --- display case-conversion and sort-conversion tables

e dump_map.c --- standalonefile

169

Annotated List of Filesin the MySQL Source
Code Distribution

int2str.c --- integer-to-string

is_prefix.c --- checks whether stringl starts with string2

lIstr.c --- convert long long to temporary-buffer string, return pointer
longlong2str.c --- ditto, but to argument-buffer

memcmp.c --- memory compare

memcpy.cC --- memory copy

memset.c --- memory set

my_strtoll10.c --- longlong2str for radix 10

my_vsnprintf.c --- variant of printf

r_strinstr.c --- seeif one string is within another

str2int.c --- convert string to integer

strappend.c --- fill up a string to n characters

strcat.c --- concatenate strings

strcend.c --- point to where a character C occurs within str, or NULL
strchr.c --- point to first place in string where character occurs
strcmp.c --- compare two strings

strcont.c --- point to where any one of a set of characters appears
strend.c --- point to the \O' byte which terminates str

strfill.c --- fill astring with n copies of a byte

strinstr.c --- find string within string

strlen.c --- return length of string in bytes

strmake.c --- create new string from old string with fixed length, append end \O if needed
strmov.c --- move source to dest and return pointer to end

strnlen.c --- return min(length of string, n)

strnmov.c --- move source to dest for source size, or for n bytes
strrchr.c --- find a character within string, searching from end
strstr.c --- find an instance of pattern within source

strto.c --- string to long, to long long, to unsigned long, etc.

strtod.c --- string to double

strtol.c --- string to long

170

Annotated List of Filesin the MySQL Source
Code Distribution

» dtrtoll.c --- string to long long

e dtrtoul.c --- string to unsigned long

» strtoull.c --- string to unsigned long long

e strxmov.c --- move a series of concatenated source strings to dest

e strxnmov.c --- like strxmov.c but with a maximum length n

e dir_test.c --- test of al the string functions encoded in assembler

* uca-dump.c --- shows unicode collation agorithm dump

» udiv.c --- unsigned long divide, for operating systems that don't support these

e utrll-dump.c --- dump east Asian wide text file

e xml.c --- read and parse XML strings; used to read character definition information stored in /

sqgl/share/charsets

There are also four .ASM files --- macros.asm, ptr_cmp.asm, strings.asm, and strxmov.asm --- which
can replace some of the C-program functions. But again, they look like optimizations for old members
of the Intel processor family.

15.1.35. The support-fil es Directory

Files used to build MySQL on different systems.
The files here are for building ("making") MySQL given a package manager, compiler, linker, and other

build tools. The support files provide instructions and switches for the build processes. They include ex-
ample my.cnf files one can use as a default setup for MySQL.

15.1.36. The t est s Directory

Testsin Perl andin C.

The files in this directory are test programs that can be used as a base to write a program to simulate
problems in MySQL in various scenarios: forks, locks, big records, exporting, truncating, and so on.
Some examples are:

* connect_test.c --- test that a connect is possible

e insert_test.c --- test that an insert is possible

o list_test.c --- test that a select is possible

» select test.c --- test that aselect is possible

» showdb_test.c --- test that a show-databases is possible

e sd_test.c--- test that SSL is possible

» thread_test.c --- test that threading is possible

171

Annotated List of Filesin the MySQL Source
Code Distribution

15.1.37. The t ool s Directory

Tools --- well, actually, one tool.

Theonly fileis:

* mysglmanager.c --- A "server management daemon" by Sasha Pachev. Thisis atool under develop-
ment and is not yet useful. Related to fail-safe replication.

15.1.38. The VC++Fi | es Directory

Visual C++ Files.

Includes this entire directory, repeated for VC++ (Windows) use.

V C++Files includes a complete environment to compile MySQL with the VC++ compiler. To use it,
just copy the files on this directory; the make win_src_distribution.sh script uses these files to create a
Windows source installation.

This directory has subdirectories which are copies of the main directories. For example, there is a sub-
directory \V C++Files\heap, which has the Microsoft developer studio project file to compile \heap with
VC++. So for adescription of the files in \V C++Files\heap, see the description of the filesin \heap. The
same applies for almost all of VC++Files's subdirectories (bdb, client, isam, libmysql, etc.). The differ-
enceisthat the \V C++Files variants are specifically for compilation with Microsoft Visual C++ in 32-bit
Windows environments.

In addition to the "subdirectories which are duplicates of directories’, VC++Files contains these subdir-
ectories, which are not duplicates:

e comp_err --- (nearly empty)

e contrib --- (nearly empty)

» InstallShield --- script files

* isamchk --- (nearly empty)

* libmysgltest --- one small non-MySQL test program: mytest.c

* myisamchk --- (nearly empty)

* myisamlog --- (nearly empty)

e myisammrg --- (nearly empty)

» mysglbinlog --- (nearly empty)

* mysglmanager --- MFC foundation class files created by AppWizard

e mysglserver --- (nearly empty)

* mysglshutdown --- one short program, mysglshutdown.c

» mysglwatch.c --- Windows service initialization and monitoring

e my_print_defaults --- (nearly empty)

172

Annotated List of Filesin the MySQL Source
Code Distribution

e pack_isam --- (nearly empty)

* perror --- (nearly empty)

» prepare--- (nearly empty)

* replace --- (nearly empty)

» SCCS--- source code control system

» testl --- tests connecting via X threads

o thr_insert_test --- (nearly empty)

» thr_test --- one short program used to test for memory-allocation bug

* winmysgladmin --- the winmysgladmin.exe source

The "nearly empty" subdirectories noted above (e.g. comp_err and isamchk) are needed because VC++

requires one directory per project (i.e. executable). We are trying to keep to the MySQL standard source
layout and compile only to different directories.

15.1.39. The vi o Directory

Virtual I/O Library.

The VIO routines are wrappers for the various network 1/O calls that happen with different protocols.
The idea is that in the main modules one won't have to write separate bits of code for each protocol.
Thusvio's purpose is somewhat like the purpose of Microsoft's winsock library.

The underlying protocols at this moment are: TCP/IP, Named Pipes (for WindowsNT), Shared Memory,
and Secure Sockets (SSL).

The C programs are;

e test-sdl.c --- Short standalone test program: SSL

» test-sdlclient.c --- Short standalone test program: clients
e test-sslserver.c --- Short standalone test program: server
* vio.c --- Declarations + open/close functions

» viosocket.c --- Send/retrieve functions

* viossl.c--- SSL variations for the above

+ viosslfactories.c --- Certification / Verification

* viotest.cc --- Short standal one test program: general

* viotest-ssl.c --- Short standalone test program: SSL

» viotest-sslconnect.cc --- Short standalone test program: SSL connect

The older functions --- raw_net_read, raw_net_write --- are now obsolete.

173

Annotated List of Filesin the MySQL Source
Code Distribution

15.1.40. The zl i b Directory

Data compression library, used on Windows.

Zlib is a data compression library used to support the compressed protocol and the COMPRESS/UN-
COMPRESS functions under Windows. On Unix, MySQL uses the system libgz.a library for this pur-
pose.

Zlib --- which presumably stands for "Zip Library" --- is not a MySQL package. It was produced by the

GNU Zip (gzip.org) people. Zlib is a variation of the famous "Lempel-Ziv" method, which is also used

by "Zip". The method for reducing the size of any arbitrary string of bytesis asfollows:

* Find a substring which occurs twice in the string.

» Replace the second occurrence of the substring with (a) a pointer to the first occurrence, plus (b) an
indication of the length of the first occurrence.

There is a full description of the library's functions in the gzip manua a ht-

tp://lwww.gzip.org/zlib/manual .html. Thereis therefore no need to list the modules in this document.

The MySQL program \mysys\my_compress.c uses zlib for packet compression. The client sends mes-
sages to the server which are compressed by zlib. Seealso: \ sql \ net _serv. cc.

174

http://www.gzip.org/zlib/manual.html
http://www.gzip.org/zlib/manual.html

Chapter 16. Annotated List of Files In
the | nnoDB Source Code Distribution

The | nnoDB source files are the best place to look for information about internals of the file structure
that MySQL ers can optionally use for transaction support. But when you first look at al the subdirector-
ies and file names you'll wonder: Where Do | Start? It can be daunting.

WEell, I've been through that phase, so I'll pass on what | had to learn on the first day that | looked at | n-
noDB source files. | am very sure that this will help you grasp, in overview, the organization of | n-
noDB modules. I'm also going to add comments about what is going on -- which you should mistrust!
These comments are reasonable working hypotheses; nevertheless, they have not been subjected to ex-
pert peer review.

Here's how I'm going to organize the discussion. I'll take each of the 31 | nnoDB subdirectories that
come with the MySQL 5.0 source codein\ i nnobase (on my Windows directory). The format of each
section will belike this every time:

\subdirectory-name (LONGER EXPLANATORY NAME)

File What Name|Size Comment Inside File
Name |Stands For

file- my-own-guess |in-bytes from-the-file-itself
name

... My-Comments

For example:

\ha (HASHI NG)

Fil e Nane What Name Stands For Size Comment Inside File
haOha. c Hashi ng/ Hashi ng 8, 145 Hash table with external chains
Comment s about hashing will be here.

The "Comment Inside File" column is a direct copy from the first /* comment */ line inside the file. All
other comments are mine. After I've discussed each directory, I'll finish with some notes about naming
conventions and a short list of URLs that you can use for further reference.

Now let's begin.
\btr (B-TREE)

Fil e Nane VWhat Name Stands For Size Comment Inside File
btrObtr.c B-tree /| B-tree 82, 400 B-tree

btrOcur.c B-tree / Cursor 103, 233 i ndex tree cursor

btrOsea. c B-tree / Search 41,788 i ndex tree adaptive search
btrOpcur.c B-tree / persistent cursor 16, 720 i ndex tree persistent cursor

If you total up the sizes of the C files, you'll see that \btr is the second-largest file group in InnoDB. This

175

Annotated List of Filesin thel nnoDB Source
Code Distribution

is understandabl e because maintaining a B-tree is arelatively complex task. Luckily, there has been alot
of work done to describe efficient management of B-tree and B+-tree structures, much of it open-source
or public-domain, since their original invention over thirty years ago.

| nnoDB likes to put everything in B-trees. Thisiswhat 1'd call a"distinguishing characteristic" because
in al the major DBMSs (like IBM DB2, Microsoft SQL Server, and Oracle), the main or default or clas-
sic structure is the heap-and-index. In InnoDB the main structure isjust the index. To put it another way:
InnoDB keeps the rows in the leaf node of the index, rather than in a separate file. Compare Oracl€e's In-
dex Organized Tables, and Microsoft SQL Server's Clustered Indexes.

This, by the way, has some conseguences. For example, you may as well have a primary key since oth-
erwise InnoDB will make one anyway. And that primary key should be the shortest of the candidate
keys, since | nnoDB will use it as a pointer if there are secondary indexes.

Most importantly, it means that rows have no fixed address. Therefore the routines for managing file
pages should be good. We'll see about that when we look at the \row (ROW) program group later.

\buf (BUFFERING)

Fil e Nane VWhat Name Stands For Size Conment Inside File

buf Obuf . c Buffering / Buffering 65,582 The database buffer buf_pool
buf Of l u. c Buf fering / Flush 29, 583 flush al gorithm
bufOlru.c / least-recently-used 27,515 ... replacenent algorithm
buf Orea. c Buf fering / read 21,504 ... read

There is a separate file group (\mem MEMORY') which handles memory requests in general. A "buffer"
usually has a more specific definition, as a memory area which contains copies of pages that ordinarily
are in the main data file. The "buffer pool" is the set of all buffers (there are lots of them because In-
noDB doesn't depend on the operating system's caching to make things faster).

The pool size is fixed (at the time of this writing) but the rest of the buffering architecture is sophistic-
ated, involving ahost of control structures. In general: when InnoDB needs to access a new page it looks
first in the buffer pool; InnoDB reads from disk to a new buffer when the page isn't there; InnoDB
chucks old buffers (basing its decision on a conventional Least-Recently-Used algorithm) when it has to
make space for a new buffer.

There are routines for checking a page's validity, and for read-ahead. An example of "read-ahead" use: if
a sequential scan isgoing on, then aDBMS can read more than one page at atime, which is efficient be-
cause reading 32,768 bytes (two pages) takes less than twice as long as reading 16,384 bytes (one page).

\data (DATA)
File Nane What Nanme Stands For Size Conment Inside File
dat aOdata.c Data / Data 15, 344 SQL data field and tuple
dat aOtype.c Data / Type 7,417 Data types

Thisisacollection of minor utility routines affecting rows.

\db (DATABASE)

Thereare no .cfilesin\db, just one .h file with some definitions for error codes.
\dict (DICTIONARY)

Fil e Nane VWhat Nane Stands For Size Comment Inside File

Annotated List of Filesin thel nnoDB Source
Code Distribution

dictOdict.c Dictionary / Dictionary 114,263 Data dictionary system

di ct Oboot.c Dictionary / boot 11, 704 ... booting

dictOcrea.c Dictionary / Create 37,278 ... Ccreation

dictOl oad.c Dictionary / |oad 34, 049 ... load to nenmory cache
dictOmemc Dictionary / menory 7,470 ... nmenmory object creation

The data dictionary (known in some circles as the catalog) has the metadata information about objectsin
the database --- column sizes, table names, and the like.

\dyn (DYNAMICALLY ALLOCATED ARRAY)
Fil e Nane What Nanme Stands For Size Comment Inside File

dynOdyn. c Dynami c / Dynam c 994 dynam cally all ocated array
There is a single function in the dynOdyn.c program, for adding a block to the dynamically allocated ar-
ray. InnoDB might use the array for managing concurrency between threads.
At the moment, the \dyn program group istrivial.
\eval (EVALUATING)

File Nane What Name Stands For Size Coment Inside File

eval Oeval . ¢ Eval uati ng/ Evaluating 17,061 SQ. eval uator
eval Oproc. c Eval uating/ Procedures 5,001 Executes SQ. procedures

The evaluating step is a late part of the process of interpreting an SQL statement --- parsing has already
occurred during \pars (PARSING).

The ability to execute SQL stored procedures is an InnoDB feature, but MySQL handles stored proced-
uresin its own way, so the evalOproc.c program is unimportant.

\fil (FILE)
Fil e Nane What Nanme Stands For Size Comment Inside File
filofil.c File / File 118, 312 The lowlevel file system

The reads and writes to the database files happen here, in coordination with the low-level file i/o
routines (see osOfile.c in the \os program group).

Briefly: atable's contents are in pages, which are in files, which are in tablespaces. Files do not grow;
instead one can add new files to the tablespace. As we saw earlier (discussing the \btr program group)
the pages are nodes of B-trees. Since that's the case, new additions can happen at various places in the
logical file structure, not necessarily at the end. Reads and writes are asynchronous, and go into buffers,
which are set up by routines in the \buf program group.

\fsp (FILE SPACE)
Fil e Nane What Nanme Stands For Size Comment Inside File

fspOfsp.c Fil e Space Managenent 110,495 File space managenent

| would have thought that the \fil (FILE) and \fsp (FILE SPACE) MANAGEMENT programs would fit
together in the same program group; however, | guess the InnoDB folk are splitters rather than lumpers.

177

Annotated List of Filesin thel nnoDB Source
Code Distribution

It'sin fspOfsp.c that one finds some of the descriptions and comments of extents, segments, and headers.
For example, the "descriptor bitmap of the pages in the extent" isin here, and you can find as well how
the free-page list is maintained, what's in the bitmaps, and what various header fields' contents are.

\fut (FILE UTILITY)

futOfut.c File Uility / Uility 293 Fil e-based utilities
futOlst.c File Uility / List 14,176 File-based list utilities

Mainly these small programs affect only file-based lists, so maybe saying "File Utility" is too generic.
Thereal work with data files goes on in the \fsp program group.

\ha (HASHING)

Fil e Nane VWhat Nanme Stands For Size Conment Inside File
haOha. c Hashi ng / Hashi ng 8, 145 Hash table with external chains
hashOhash. ¢ Hashi ng / Hashi ng 3,283 Sinpl e hash table utility

The two C programs in the \ha directory --- haOha.c and hashOhash.c --- both refer to a "hash table" but
hashOhash.c is specialized, it is mostly about accessing points in the table under mutex control.

When a "database” is so small that InnoDB can load it al into memory at once, it's more efficient to ac-
cessit viaahash table. After al, no disk i/o can be saved by using an index lookup, if there's no disk.

\ibuf (INSERT BUFFER)
Fil e Nane VWhat Nane Stands For Size Comment Inside File

i buf Oi buf.c I nsert Buffer / 91, 397 I nsert buffer

The words "Insert Buffer" mean not "buffer used for INSERT" but "insertion of a buffer into the buffer
pool" (see the \buf BUFFER program group description). The matter is complex due to possibilities for
deadlocks, a problem to which the comments in the ibufOibuf.c program devote considerable attention.

\include (INCLUDE)

All .hand .ic filesare in the \include directory. It's habitual to put comments along with the descriptions,
so if (for example) you want to see comments about operating system file activity, the place to look is
\include\osOfile.h.

\lock (LOCKING)

Fil e Nane VWhat Nane Stands For Size Comment Inside File

| ockOl ock. c Lock / Lock 139, 207 The transaction | ock system

If you've used DB2 or SQL Server, you might think that locks have their own in-memory table, that row
locks might need occasional escalation to table locks, and that there are three lock types. Shared, Up-
date, Exclusive.

All those things are untrue with | nnoDB! Locks are kept in the database pages. A bunch of row locks
can't be rolled together into a single table lock. And most importantly there's only one lock type. | call
this type "Update" because it has the characteristics of DB2 / SQL Server Update locks, that is, it blocks
other updates but doesn't block reads. Unfortunately, | nnoDB comments refer to them as "x-locks" etc.

178

Annotated List of Filesin thel nnoDB Source
Code Distribution

To sum it up: if your background is Oracle you won't find too much surprising, but if your background
isDB2 or SQL Server the locking concepts and terminology will probably confuse you at first.

You can find my online article about the differences between Oracle-style and DB2/SQL-Server-style
locks at: http://dbazine.com/gulutzan6.html

Now here is a notice from Heikki Tuuri of InnoDB. It concerns lock categories rather than lockOlock.c,
but | placeit in this section because this is the place that people are most likely to ook for it.

Errata notice about | nnoDB row locks:

#define LOCK S 4 /* shared */
#define LOCK X 5 /* exclusive */

/* Waiting lock flag */

#define LOCK WAI T 256
/* this wait bit should be so high that it can be ORed to the |ock
node and type; when this bit is set, it means that the | ock has not
yet been granted, it is just waiting for its turn in the wait queue */

/* Precise nodes */

#defi ne LOCK_ORDI NARY 0O
/* this flag denotes an ordinary next-key lock in contrast to LOCK GAP
or LOCK REC NOT_GAP */

#defi ne LOCK GAP 512
/* this gap bit should be so high that it can be ORed to the other
flags; when this bit is set, it means that the | ock holds only on the
gap before the record; for instance, an x-lock on the gap does not
give permission to nodify the record on which the bit is set; |ocks of
this type are created when records are renmoved fromthe index chain of
records */

#defi ne LOCK_REC NOT_GAP 1024
/* this bit nmeans that the lock is only on the index record and does
NOT bl ock inserts to the gap before the index record; this is used in
the case when we retrieve a record with a unique key, and is al so used
in |locking plain SELECTs (not part of UPDATE or DELETE) when the user
has set the READ COW TTED i sol ati on | evel */

#defi ne LOCK_| NSERT_I NTENTI ON 2048
/* this bit is set when we place a waiting gap type record | ock
request in order to let an insert of an index record to wait unti
there are no conflicting | ocks by other transactions on the gap; note
that this flag remains set when the waiting lock is granted, or if the
lock is inherited to a neighboring record */

Errata notice about | nnoDB row locks ends.
\log (LOGGING)
Fil e Nane What Nanme Stands For Size Comment Inside File

| 0og0l 0g. c Loggi ng / Loggi ng 86, 043 Dat abase | og
| ogOrecv.c Logging / Recovery 91, 352 Recovery

I've aready written about the \log program group, so here's a link to my previous article: "How Logs
work with MySQL and InnoDB": ht-
tp://www.devarticles.com/c/a/MySQL/How-L ogs-Work-On-MySQL -With-InnoDB-Tables

\mach (MACHINE FORMAT)

Fil e Nane VWhat Nane Stands For Size Comment Inside File

179

http://dbazine.com/gulutzan6.html
http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables
http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables

Annotated List of Filesin thel nnoDB Source
Code Distribution

nmachOdat a. ¢ Machi ne/ Dat a 2,335 Utilities for converting

The machOdata.c program has two small routines for reading compressed ulints (unsigned long in-
tegers).

\mem (MEMORY)

File Nane What Nanme Stands For Size Conment Inside File
menOmem ¢ Menory / Menory 10, 310 The menory nanagenent
men0Ddbg. ¢ Menory / Debug 22,054 ... the debug code
nmenOpool . ¢ Menory / Pool 16, 511 ... the lowest |evel

There is a long comment at the start of the memOpool.c program, which explains what the memory-
consumers are, and how InnoDB tries to satisfy them. The main thing to know is that there are really
three pools: the buffer pool (see the \buf program group), the log pool (see the \log program group), and
the common pool, which is where everything that's not in the buffer or log pools goes (for example the
parsed SQL statements and the data dictionary cache).

\mtr (MINI-TRANSACTION)

Fil e Nane What Nanme Stands For Size Conment Inside File
nmrontr.c M ni -transacti on / 12, 620 M ni -transacti on buffer
ntrOl og.c M ni -transaction / Log 8, 090 ... log routines

The mini-transaction routines are called from most of the other program groups. 1'd describe this as a
low-level utility set.

\os (OPERATING SYSTEM)

Fil e Nane VWhat Nanme Stands For Size Comment Inside File

osOfile.c oS/ File 104,081 To i/o primtives

osOt hread.c OS / Thread 7,754 To thread control primitives
osOproc.c OS / Process 16, 919 To process control prinitives

osOsync. c OS / Synchronization 14,256 To synchronization primtives

Thisis a group of utilities that other modules may call whenever they want to use an operating-system
resource. For example, in osOfile.c there is a public InnoDB function named os file create simple(),
which simply calls the Windows-API function CreateFile. Naturaly the call is within an "#ifdef
_ WIN__ ... #endif" block; the effective routines are somewhat different for other operating systems.

\page (PAGE)

Fil e Nane VWhat Nane Stands For Size Comment Inside File

pageOpage. ¢ Page / Page 51,731 | ndex page routines
pageOcur.c Page / Cursor 38,127 The page cursor

It'sin the pageOpage. ¢ program that you'll learn as follows: index pages start with a header, entries
in the page are in order, at the end of the page is a sparse "page directory” (what | would have called a
dlot table) which makes binary searches easier.

Incidentally, the program comments refer to "a page size of 8 kB" which seems obsolete. Inuni v. i (a

180

Annotated List of Filesin thel nnoDB Source
Code Distribution

file containing universal constants) the page size is now #defined as 16K B.
\pars (PARSING)

Fil e Nane What Nanme Stands For Size Comment Inside File

par sOpars. ¢ Parsi ng/ Parsi ng 45,376 SQ. parser

parsOgrm c Parsi ng/ G anmar 62,685 A Bison parser
parsOopt.c Parsing/ Optim zer 31,268 Sinple SQL Optim zer
parsOsym c Parsing/ Synbol Table 5,239 SQ parser synbol table
 exyy.c Par si ng/ Lexer 62,071 Lexical scanner

The job is to input a string containing an SQL statement and output an in-memory parse tree. The
EVALUATING (subdirectory \eval) programs will use the tree.

As is common practice, the Bison and Flex tools were used --- par sOgr m ¢ is what the Bison parser
produced from an original file named par sOgr m y (also supplied), and | exyy. ¢ is what Flex pro-
duced.

Since | nnoDB is a DBMS by itself, it's natural to find SQL parsing in it. But in the MySQL/InnoDB
combination, MySQL handles most of the parsing. These files are unimportant.

\que (QUERY GRAPH)
Fil e Nane What Nanme Stands For Size Comment Inside File

gueOque. c Query Graph / Query 30,774 Query graph
The program queOque.c ostensibly is about the execution of stored procedures which contain commit/
rollback statements. | took it that this has little importance for the average MySQL user.
\read (READ)

Fil e Nane VWhat Name Stands For Size Conment Inside File

readOread.c Read / Read 9,935 Cursor read

The r eadOr ead. ¢ program opens a "read view" of a query result, using some functions in the \trx
program group.

\rem (RECORD MANAGER)

Fil e Nane What Name Stands For Size Comment Inside File

renfrec.c Record Manager 38,573 Record Manager

renDcnp. c Record Manager / 26, 617 Conpari son services for records
Conpari son

There's an extensive comment near the start of remOrec.c title "Physical Record" and it's recommended
reading. At some point you'll ask what are all those bits that surround the data in the rows on a page, and
thisiswhere you'll find the answer.

\row (ROW)
Fil e Nane VWhat Nane Stands For Size Comment Inside File
rowOr ow. ¢ Row / Row 18, 375 Ceneral row routines
rowduins.c Row / Undo Insert 6, 799 Fresh insert undo

181

Annotated List of Filesin thel nnoDB Source
Code Distribution

rowounod.c Row / Undo Modify 19, 712 Undo nodify of a row
rowdundo.c Row / Undo 10, 512 Row undo

rowdvers.c Row / Version 14, 385 Row ver si ons
rowonysql.c Row / MySQ 112, 462 Interface [to MySQ]
rowdi ns. c Row / | nsert 42, 829 Insert into a table
rowosel . c Row / Sel ect 111,719 Sel ect

rowlupd. ¢ Row / Updat e 51, 824 Update of a row
rowOpurge.c Row / Purge 15, 609 Pur ge obsol ete records

Rows can be selected, inserted, updated/deleted, or purged (a maintenance activity). These actions cause
following actions, for example after insert there can be an index-update test, but it seems to me that
sometimes the following action has no MySQL equivalent (yet) and so is inoperative.

Speaking of MySQL, notice that one of the larger programs in the \row program group is the "interface
between Innobase row operations and MySQL" (rowOmysgl.c) --- information interchange happens at
this level because rows in InnoDB and in MySQL are analogous, something which can't be said for
pages and other levels.

\srv (Server)
File Name What Nanme Stands For Size Comment Inside File
srvOsrv.c Server | Server 75, 633 Server main program
srvOque. c Server /| Query 2,463 Server query execution
srvOstart.c Server / Start 50, 154 Starts the server

This is where the server reads the initial configuration files, splits up the threads, and gets going. There
is along comment deep in the program (you might miss it at first glance) titled "IMPLEMENTATION
OF THE SERVER MAIN PROGRAM" in which you'll find explanations about thread priority, and
about what the responsibiities are for various thread types.

I nnoDB has many threads, for example "user threads' (which wait for client requests and reply to
them), "parallel communication threads" (which take part of a user thread's job if a query process can be
split), "utility threads" (background priority), and a"master thread" (high priority, usually asleep).

\sync (SYNCHRONIZATION)

Fil e Nane VWhat Nane Stands For Size Comment Inside File

syncOsync. ¢ Synchroni zation / 37,940 Mutex, the basic sync primtive
syncOarr.c ... [array 26,455 Wit array used in prinmtives
syncOrw. ¢ ... | read-wite 22,846 read-wite lock for thread sync

A mutex (Mutual Exclusion) is an object which only one thread/process can hold at atime. Any modern
operating system APl has some functions for mutexes; however, as the comments in the syncOsync.c
code indicate, it can be faster to write one's own low-level mechanism. In fact the old assembly-lan-
guage XCHG trick is in syncOsync.c's helper file, \includé\syncOsync.ic. This is the only program that
contains any assembly code.

The i/o and thread-control primitives are called extensively. The word "synchronization” in this context
refers to the mutex-create and mutex-wait functionality.

\thr (Thread L ocal Storage)
Fil e Nane What Nanme Stands For Size Comment Inside File

throOloc.c Thread / Local 5,334 The thread | ocal storage

182

Annotated List of Filesin thel nnoDB Source
Code Distribution

I nnoDB doesn't use the Windows-API thread-local-storage functions, perhaps because they're not port-
able enough.

\trx (Transaction)

Fil e Nane VWhat Nanme Stands For Size Comment Inside File
trx0Otrx.c Transaction / 50, 480 The transaction
trxOpurge.c Transaction / Purge 29, 133 Purge ol d versions
trxOrec.c Transaction / Record 37,346 Undo | og record
trxOroll.c / Rollback 31, 448 Rol | back

trx0sys. c Transaction / System 27,018 System

trxOrseg.c [/ Rollback segnent 6, 445 Rol | back segment
trxOundo.c Transaction / Undo 51,519 Undo | og

| nnoDB's transaction management is supposedly "in the style of Oracle" and that's close to true but can
mislead you.

* First: 1 nnoDB usesrollback segments like Oracle8i does --- but Oracledi uses a different name.

e Second: | nnoDB uses multi-versioning like Oracle does --- but | see nothing that looks like an Or-
acle ITL being stored in the | nnoDB data pages.

e Third: 1 nnoDB and Oracle both have short (back-to-statement-start) versioning for the READ
COWM TTED isolation level and long (back-to-transaction-start) versioning for higher levels --- but
I nnoDB and Oracle have different "default" isolation levels.

* Findly: | nnoDB's documentation says it has to lock "the gaps before index keys' to prevent
phantoms --- but any Oracle user will tell you that phantoms are impossible anyway at the SERI AL-
| ZABLE isolation level, so key-locks are unnecessary.

The main idea, though, is that | nnoDB has multi-versioning. So does Oracle. Thisis very different from
the way that DB2 and SQL Server do things.

\usr (USER)
Fil e Nane What Nanme Stands For Size Comment Inside File
usrOsess.c User / Session 1, 740 Sessi ons

One user can have multiple sessions (the session being all the things that happen between a connect and
disconnect). Thisis where | nnoDB used to track session IDs, and server/client messaging. It's another
of those items which isusually MySQL's job, though. So nhow usrOsess.c merely closes.

\ut (UTILITIES)

Fil e Nane VWhat Nanme Stands For Size Comment Inside File
utOQut.c Uilities / Wilities 9,728 Various utilities

ut Obyte.c Uilities / Debug 793 Byte utilities

ut Ornd. c Uilities / Random 1,474 Random nunber s and hashi ng
ut Onem ¢ Uilities / Menory 10, 358 Menory primtives

ut 0dbg. ¢ Uilities / Debug 2,579 Debug utilities

The two functions in utObyte.c are just for lower/upper case conversion and comparison. The single
function in utOrnd.c is for finding a prime slightly greater than the given argument, which is useful for

183

Annotated List of Filesin thel nnoDB Source
Code Distribution

hash functions, but unrelated to randomness. The functions in utOmem.c are wrappers for "malloc" and
"free" calls --- for the real "memory" module see section \mem (MEMORY). Finally, the functions in
utOut.c are a miscellany that didn't fit better elsewhere: get high bytes, clock, time, difftime,
get_year_month_day, and "sprintf" for various diagnostic purposes.

In short: the \ut group istrivial.
Thisisthe end of the section-by-section account of | nnoDB subdirectories.
Some Notes About Structures

InnoDB's job, as a storage engine for MySQL, isto provide: commit-rollback, crash recovery, row-level
locking, and consistent non-blocking reads. How? With locks, a paged-file structure with buffer pooling,
and undo/redo logs,

The locks are kept in bit maps in main memory. Thus InnoDB differs from Oracle in one respect: in-
stead of storing lock information on the page as Oracle does with Interested Transaction Lists, InnoDB
keeps it in a separate and more volatile structure. But both Oracle and InnoDB try to achieve a similar
goal: "writers don't block readers'. So atypical InnoDB row-read involves: () if the reading is for writ-
ing, then check if the row islocked and if so wait; (b) if according to the information in the row header
the row has been changed by some newer ransaction, then get the older version from the log. We call the
(b) part "versioning" because it means that a reader can get the older version of arow and thus will have
atemporally consistent view of all rows.

The InnoDB workspace consists of: tablespace and log files. A tablespace consists of: segments, as
many as necessary. A segment is usually afile, but might be araw disk partition. A segment consists of:
extents. An extent consists of: 64 pages. A page's length is always 16KB, for both data and index. A
page consists of: a page header, and some rows. The page and row formats are the subjects of later
chapters.

InnoDB keeps two logs, the redo log and the undo log.

Theredo log is for re-doing data changes that had not been written to disk when a crash occurred. There
is one redo log for the entire workspace, it contains multiple files (the number depends on in-
nodb_log files in_group), it is circular (that is, after writing to the last file InnoDB starts again on the
first file). The file header includes the last successful checkpoint. A redo log record's contents are: Page
Number (4 bytes = page number within tablespace), Offset of change within page (2 bytes), Log Record
Type (insert, update, delete, "fill space with blanks’, etc.), and the changes on that page (only redo val-
ues, not old values).

The undo log is primarily for removing data changes that had been written to disk when a crash oc-
curred, but should not have been written, because they were for uncommitted transactions. Sometimes
InnoDB calls the undo log the "rollback segment”. The undo log is inside the tablespace. The "insert"
section of the undo log is needed only for transaction rollback and can be discarded at COMMIT time.
The "update/delete” section of the undo log is aso useful for consistent reads, and can be discarded
when InnoDB has ended al transactions that might need the undo log records to reconstruct earlier ver-
sions of rows. An undo log record's contents are: Primary Key Value (not a page number or physical ad-
dress), Old Transaction ID (of the transaction that updated the row), and the changes (only old values).

COMMIT will write the contents of the log buffer to disk, and put undo log records in a history list.
ROLLBACK will delete undo log records that are no longer needed. PURGE (an internal operation that
occurs outside user control) will no-longer-necessary undo log records and, for data records that have
been marked for deletion and are no longer necessary for consistent read, will remove the records.
CHECKPOINT causes -- well, see the article "How Logs Work On MySQL With InnoDB Tables'.

You might be able to find a slide show, "ACID Transactions in MySQL With InnoDB", via this page:
http://dev.mysqgl.com/tech-resources/presentations/. If the links are broken, notify MySQL.

A Note About File Naming

184

Annotated List of Filesin thel nnoDB Source
Code Distribution

There appears to be a naming convention. The first letters of the file name are the same as the subdirect-
ory name, then there is a'0' separator, then there is an individual name. For the main program in a sub-
directory, the individual name may be a repeat of the subdirectory name. For example, there is a file
named halha.c (the first two letters ha mean "it'sin in subdirectory ..\ha', the next letter 0 means "0 sep-
arator", the next two letters mean "this is the main ha program"). This naming convention is not strict,
though: for example the file lexyy.c isin the \pars subdirectory.

A Note About Copyrights

Most of the files begin with a copyright notice or a creation date, for example "Created 10/25/1995
Heikki Tuuri". | don't know a great deal about the history of | nnoDB, but found it interesting that most
creation dates were between 1994 and 1998.

References
* Ryan Bannon, Alvin Chin, Faryaaz Kassam and Andrew Roszko. "InnoDB Concrete Architecture”
http://www.swen.uwaterl 0o.ca/l~mrbannon/cs798/assignment_02/innodb. pdf

A student paper. It's an interesting attempt to figure out | nnoDB's architecture using tools, but |
didn't end up using it for the specific purposes of this article.

e Peter Gulutzan. "How Logs Work With MySQL And InnoDB" ht-
tp://www.devarticles.com/c/alMySQL /How-L ogs-Work-On-MySQL -With-InnoDB-Tables

» Heikki Tuuri. "InnoDB Engine in MySQL-Max-3.23.54 / MySQL-4.0.9: The Up-to-Date Reference
Manual of InnoDB" http://www.innodb.com/ibman.html

This is the natural starting point for all InnoDB information. Mr Tuuri also appears frequently on
MySQL forums.

185

http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables
http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables
http://www.innodb.com/ibman.html

Index

E

error messages, 140
defining, 140
table handler, 143

F

filesort optimization, 48

@)
optimizing
filesort, 48

T
table handler
error messages, 143

186

	MySQL Internals Manual
	Table of Contents
	Preface
	Chapter 1. A Guided Tour Of The MySQL Source Code
	Chapter 2. Coding Guidelines
	Chapter 3. The Optimizer
	3.1. The Index Merge Join Type
	3.1.1. Overview
	3.1.2. Index Merge Optimizer
	3.1.2.1. Range Optimizer
	3.1.2.2. Index Merge Optimizer

	3.1.3. Row Retrieval Algorithm

	Chapter 4. Important Algorithms and Structures
	4.1. The Item class
	4.2. How MySQL Does Sorting (filesort)
	4.3. Bulk Insert
	4.4. How MySQL Does Caching
	4.5. How MySQL Uses the Join Buffer Cache
	4.6. How MySQL Handles FLUSH TABLES
	4.7. Full-text Search
	4.8. FLOAT and DOUBLE data types and their representation.
	4.9. Threads
	4.10. Error flags and functions
	4.11. Functions in the mysys Library
	4.12. Bitmaps

	Chapter 5. How MySQL Performs Different Selects
	5.1. Steps of Select Execution
	5.2. select_result Class
	5.3. SIMPLE or PRIMARY SELECT
	5.4. Structure Of Complex Select
	5.5. Non-Subquery UNION Execution
	5.6. Derived Table Execution
	5.7. Subqueries
	5.8. Single Select Engine
	5.9. Union Engine
	5.10. Special Engines
	5.11. Explain Execution

	Chapter 6. How MySQL Transforms Subqueries
	6.1. Item_in_subselect::select_transformer
	6.1.1. Scalar IN Subquery
	6.1.2. Row IN Subquery

	6.2. Item_allany_subselect
	6.3. Item_singlerow_subselect

	Chapter 7. MySQL Client/Server Protocol
	7.1. Licensing Notice
	7.2. Organization
	7.3. Elements
	7.4. The Packet Header
	7.5. Packet Types
	7.6. Handshake Initialization Packet
	7.7. Client Authentication Packet
	7.8. Password functions
	7.9. Command Packet
	7.10. Types Of Result Packets
	7.11. OK Packet
	7.12. Error Packet
	7.13. Result Set Header Packet
	7.14. Field Packet
	7.15. EOF Packet
	7.16. Row Data Packet
	7.17. Row Data Packet: Binary (Tentative Description)
	7.18. Prepared Statement Initialization Packet (Tentative Description)
	7.19. OK for Prepared Statement Initialization Packet (Tentative Description)
	7.20. Parameter Packet (Tentative Description)
	7.21. Long Data Packet (Tentative Description)
	7.22. Execute Packet (Tentative Description)
	7.23. Compression

	Chapter 8. Replication
	8.1. Main Code Files
	8.2. The Binary Log
	8.3. Replication Threads
	8.3.1. The Slave I/O Thread
	8.3.2. The Slave SQL Thread
	8.3.3. Why 2 Threads?
	8.3.4. The Binlog Dump Thread

	8.4. How Replication Deals With...
	8.4.1. auto_increment Columns, LAST_INSERT_ID()
	8.4.2. User Variables (Since 4.1)
	8.4.3. System Variables
	8.4.4. Some Functions
	8.4.5. Non-repeatable UDF Functions
	8.4.6. Prepared Statements
	8.4.7. Temporary Tables
	8.4.8. LOAD DATA [LOCAL] INFILE (Since 4.0)

	8.5. How a Slave Asks Its Master to Send Its Binary Log
	8.6. Network Packets in Detail
	8.7. Replication Event Format in Detail
	8.7.1. The Common Header
	8.7.2. The “Post-headers” (Event-specific Headers)

	8.8. Plans

	Chapter 9. MyISAM Record Structure
	9.1. Introduction
	9.2. Physical Attributes of Columns
	9.3. Where to Look For More Information

	Chapter 10. The .MYI file
	10.1. MyISAM Files

	Chapter 11. MyISAM Compressed Data File Layout
	11.1. Huffman compression
	11.2. The myisampack Program
	11.3. Record and Blob Length Encoding
	11.4. Code Tree Representation
	11.5. Usage of the Index File
	11.6. myisampack Tricks
	11.7. Detailed Specification of the Decoding:

	Chapter 12. InnoDB Record Structure
	12.1. High-Altitude Picture
	12.1.1. FIELD START OFFSETS
	12.1.2. EXTRA BYTES
	12.1.3. FIELD CONTENTS

	12.2. Where to Look For More Information

	Chapter 13. InnoDB Page Structure
	13.1. High-Altitude View
	13.1.1. Fil Header
	13.1.2. Page Header
	13.1.3. The Infimum and Supremum Records
	13.1.4. User Records
	13.1.5. Free Space
	13.1.6. Page Directory
	13.1.7. Fil Trailer

	13.2. Example
	13.3. Where to Look For More Information

	Chapter 14. Error Messages
	14.1. Adding New Error Messages to MySQL
	14.2. Adding Storage Engine Error Messages

	Chapter 15. Annotated List of Files in the MySQL Source Code Distribution
	15.1. Directory Listing
	15.1.1. The bdb Directory
	15.1.2. The BitKeeper Directory
	15.1.3. The BUILD Directory
	15.1.4. The client Directory
	15.1.5. The config Directory
	15.1.6. The cmd-line-utils Directory
	15.1.7. The dbug Directory
	15.1.8. The Docs Directory
	15.1.9. The extra Directory
	15.1.10. The heap Directory
	15.1.11. The include Directory
	15.1.12. The innobase Directory
	15.1.13. The libmysql Directory
	15.1.14. The libmysql_r Directory
	15.1.15. The libmysqld Directory
	15.1.16. The man Directory
	15.1.17. The myisam Directory
	15.1.18. The myisammrg Directory
	15.1.19. The mysql-test Directory
	15.1.20. The mysys Directory
	15.1.21. The ndb Directory
	15.1.22. The netware Directory
	15.1.23. The NEW-RPMS Directory
	15.1.24. The os2 Directory
	15.1.25. The pstack Directory
	15.1.26. The regex Directory
	15.1.27. The SCCS Directory
	15.1.28. The scripts Directory
	15.1.29. The server-tools Directory
	15.1.30. The sql Directory
	15.1.31. The sql-bench Directory
	15.1.32. The sql-common Directory
	15.1.33. The SSL Directory
	15.1.34. The strings Directory
	15.1.35. The support-files Directory
	15.1.36. The tests Directory
	15.1.37. The tools Directory
	15.1.38. The VC++Files Directory
	15.1.39. The vio Directory
	15.1.40. The zlib Directory

	Chapter 16. Annotated List of Files in the InnoDB Source Code Distribution
	Index

