
Aircrack-ng

Description

Aircrack-ng is an 802.11 WEP and WPA/WPA2-PSK key cracking program.

Aircrack-ng can recover the WEP key once enough encrypted packets have been captured
with airodump-ng. This part of the aircrack-ng suite determines the WEP key using two
fundamental methods. The first method is via the PTW approach (Pyshkin, Tews,
Weinmann). The default cracking method is PTW. This is done in two phases. In the first
phase, aircrack-ng only uses ARP packets. If the key is not found, then it uses all the packets
in the capture. Please remember that not all packets can be used for the PTW method.
This Tutorial: Packets Supported for the PTW Attack page provides details. An important
limitation is that the PTW attack currently can only crack 40 and 104 bit WEP keys. The
main advantage of the PTW approach is that very few data packets are required to crack the
WEP key. The second method is the FMS/KoreK method. The FMS/KoreK method
incorporates various statistical attacks to discover the WEP key and uses these in
combination with brute forcing.

Additionally, the program offers a dictionary method for determining the WEP key.

For cracking WPA/WPA2 pre-shared keys, only a dictionary method is used. SSE2 support is
included to dramatically speed up WPA/WPA2 key processing. A “four-way handshake” is
required as input. For WPA handshakes, a full handshake is composed of four packets.
However, aircrack-ng is able to work successfully with just 2 packets. EAPOL packets (2 and
3) or packets (3 and 4) are considered a full handshake.

Screenshot

LEGEND
1 = Keybyte
2 = Depth of current key search
3 = Byte the IVs leaked
4 = Votes indicating this is correct

http://www.aircrack-ng.org/doku.php?id=airodump-ng
http://www.aircrack-ng.org/doku.php?id=supported_packets

How does it work?

The first method is the PTW method (Pychkine, Tews, Weinmann). The PTW method is fully
described in the paper found on this web site. In 2005, Andreas Klein presented another
analysis of the RC4 stream cipher. Klein showed that there are more correlations between the
RC4 keystream and the key than the ones found by Fluhrer, Mantin, and Shamir and these
may be additionally used to break WEP. The PTW method extends Klein's attack and
optimizes it for usage against WEP. It essentially uses enhanced FMS techniques described in
the following section. One particularly important constraint is that it only works with arp
request/reply packets and cannot be employed against other traffic.

The second method is the FMS/Korek method which incorporates multiple techniques.
The Techniques Papers on the links page lists many papers which describe these techniques
in more detail and the mathematics behind them.

In this method, multiple techniques are combined to crack the WEP key:

• FMS (Fluhrer, Mantin, Shamir) attacks - statistical techniques
• Korek attacks - statistical techniques
• Brute force

When using statistical techniques to crack a WEP key, each byte of the key is essentially
handled individually. Using statistical mathematics, the possibility that a certain byte in the
key is correctly guessed goes up to as much as 15% when the right initialization vector (IV)
is captured for a particular key byte. Essentially, certain IVs “leak” the secret WEP key for
particular key bytes. This is the fundamental basis of the statistical techniques.

By using a series of statistical tests called the FMS and Korek attacks, votes are accumulated
for likely keys for each key byte of the secret WEP key. Different attacks have a different
number of votes associated with them since the probability of each attack yielding the right
answer varies mathematically. The more votes a particular potential key value accumulates,

http://www.cdc.informatik.tu-darmstadt.de/aircrack-ptw/
http://www.aircrack-ng.org/doku.php?id=links#technique_papers
http://www.aircrack-ng.org/lib/exe/fetch.php?hash=2b3c96&media=http%3A%2F%2Fwww.aircrack-ng.org%2Fimg%2Faircrack-ng.explaination.gif�

the more likely it is to be correct. For each key byte, the screen shows the likely secret key
and the number of votes it has accumulated so far. Needless to say, the secret key with the
largest number of votes is most likely correct but is not guaranteed. Aircrack-ng will
subsequently test the key to confirm it.

Looking at an example will hopefully make this clearer. In the screenshot above, you can see,
that at key byte 0 the byte 0xAE has collected some votes, 50 in this case. So, mathematically,
it is more likely that the key starts with AE than with 11 (which is second on the same line)
which is almost half as possible. That explains why the more data that is available, the greater
the chances that aircrack-ng will determine the secret WEP key.

However the statistical approach can only take you so far. The idea is to get into the ball park
with statistics then use brute force to finish the job. Aircrack-ng uses brute force on likely
keys to actually determine the secret WEP key.

This is where the fudge factor comes in. Basically the fudge factor tells aircrack-ng how
broadly to brute force. It is like throwing a ball into a field then telling somebody to ball is
somewhere between 0 and 10 meters (0 and 30 feet) away. Versus saying the ball is
somewhere between 0 and 100 meters (0 and 300 feet) away. The 100 meter scenario will
take a lot longer to search then the 10 meter one but you are more likely to find the ball with
the broader search. It is a trade off between the length of time and likelihood of finding the
secret WEP key.

For example, if you tell aircrack-ng to use a fudge factor 2, it takes the votes of the most
possible byte, and checks all other possibilities which are at least half as possible as this one
on a brute force basis. The larger the fudge factor, the more possibilities aircrack-ng will try
on a brute force basis. Keep in mind, that as the fudge factor gets larger, the number of secret
keys to try goes up tremendously and consequently the elapsed time also increases. Therefore
with more available data, the need to brute force, which is very CPU and time intensive, can
be minimized.

In the end, it is all just “simple” mathematics and brute force!

For cracking WEP keys, a dictionary method is also included. For WEP, you may use either
the statistical method described above or the dictionary method, not both at the same time.
With the dictionary method, you first create a file with either ascii or hexadecimal keys. A
single file can only contain one type, not a mix of both. This is then used as input to aircrack-
ng and the program tests each key to determine if it is correct.

The techniques and the approach above do not work for WPA/WPA2 pre-shared keys. The
only way to crack these pre-shared keys is via a dictionary attack. This capability is also
included in aircrack-ng.

With pre-shared keys, the client and access point establish keying material to be used for their
communication at the outset, when the client first associates with the access point. There is a
four-way handshake between the client and access point. airodump-ng can capture this four-
way handshake. Using input from a provided word list (dictionary), aircrack-ng duplicates the
four-way handshake to determine if a particular entry in the word list matches the results the
four-way handshake. If it does, then the pre-shared key has been successfully identified.

http://www.aircrack-ng.org/doku.php?id=airodump-ng

It should be noted that this process is very computationally intensive and so in practice, very
long or unusual pre-shared keys are unlikely to be determined. A good quality word list will
give you the best results. Another approach is to use a tool like john the ripper to generate
password guesses which are in turn fed into aircrack-ng.

Explanation of the Depth Field and Fudge Factor

The best explanation is an example. We will look at a specific byte. All bytes are processed
in the same manner.

You have the votes like in the screen shot above. For the first byte they look like: AE(50)
11(20) 71(20) 10(12) 84(12)

The AE, 11, 71, 10 and 84 are the possible secret key for key byte 0. The numbers in
parentheses are the votes each possible secret key has accumulated so far.

Now if you decide to use a fudge factor of 3. Aircrack-ng takes the vote from the most
possible byte AE(50):

50 / 3 = 16.666666

Aircrack-ng will test (brute force) all possible keys with a vote greater than 16.6666, resulting
in

AE, 11, 71

being tested, so we have a total depth of three:

0 / 3 AE(50) 11(20) 71(20) 10(12) 84(12)

When aircrack-ng is testing keys with AE, it shows 0 / 3, if it has all keys tested with that
byte, it switches to the next one (11 in this case) and displays:

1 / 3 11(20) 71(20) 10(12) 84(12)

Usage
aircrack-ng [options] <capture file(s)>

You can specify multiple input files (either in .cap or .ivs format) or use file name
wildcarding. See Other Tips for examples. Also, you can run both airodump-ng and aircrack-
ng at the same time: aircrack-ng will auto-update when new IVs are available.

Here's a summary of all available options:

Option Param. Description
-a amode Force attack mode (1 = static WEP, 2 = WPA/WPA2-PSK).

-b bssid Long version –bssid. Select the target network based on the access point's
MAC address.

http://www.aircrack-ng.org/doku.php?id=aircrack-ng#other_tips
http://www.aircrack-ng.org/doku.php?id=airodump-ng

-e essid
If set, all IVs from networks with the same ESSID will be used. This option
is also required for WPA/WPA2-PSK cracking if the ESSID is not
broadcasted (hidden).

-p nbcpu On SMP systems: # of CPU to use. This option is invalid on non-SMP
systems.

-q none Enable quiet mode (no status output until the key is found, or not).

-c none (WEP cracking) Restrict the search space to alpha-numeric characters only
(0x20 - 0x7F).

-t none (WEP cracking) Restrict the search space to binary coded decimal hex
characters.

-h none (WEP cracking) Restrict the search space to numeric characters (0x30-
0x39) These keys are used by default in most Fritz!BOXes.

-d start (WEP cracking) Long version –debug. Set the beginning of the WEP key
(in hex), for debugging purposes.

-m maddr (WEP cracking) MAC address to filter WEP data packets. Alternatively,
specify -m ff:ff:ff:ff:ff:ff to use all and every IVs, regardless of the network.

-M number (WEP cracking) Sets the maximum number of ivs to use.

-n nbits (WEP cracking) Specify the length of the key: 64 for 40-bit WEP, 128 for
104-bit WEP, etc. The default value is 128.

-i index (WEP cracking) Only keep the IVs that have this key index (1 to 4). The
default behaviour is to ignore the key index.

-f fudge
(WEP cracking) By default, this parameter is set to 2 for 104-bit WEP and
to 5 for 40-bit WEP. Specify a higher value to increase the bruteforce level:
cracking will take more time, but with a higher likelyhood of success.

-H none Long version –help. Output help information.

-l file
name (Lowercase L, ell) logs the key to the file specified.

-K none Invokes the Korek WEP cracking method. (Default in v0.x)

-k korek

(WEP cracking) There are 17 korek statistical attacks. Sometimes one
attack creates a huge false positive that prevents the key from being found,
even with lots of IVs. Try -k 1, -k 2, … -k 17 to disable each attack
selectively.

-p threads Allow the number of threads for cracking even if you have a non-SMP
computer.

-r database
Utilizes a database generated by airolib-ng as input to determine the WPA
key. Outputs an error message if aircrack-ng has not been compiled with
sqlite support.

-x/-x0 none (WEP cracking) Disable last keybytes brutforce.
-x1 none (WEP cracking) Enable last keybyte bruteforcing (default).
-x2 none (WEP cracking) Enable last two keybytes bruteforcing.
-X none (WEP cracking) Disable bruteforce multithreading (SMP only).

-y none (WEP cracking) Experimental single bruteforce attack which should only
be used when the standard attack mode fails with more than one million IVs

-u none Long form –cpu-detect. Provide information on the number of CPUs and
MMX support. Example responses to “aircrack-ng –cpu-detect” are “Nb

CPU detected: 2” or “Nb CPU detected: 1 (MMX available)”.

-w words (WPA cracking) Path to a wordlist or ”-” without the quotes for standard in
(stdin).

-z none Invokes the PTW WEP cracking method. (Default in v1.x)
-P none Long version –ptw-debug. Invokes the PTW debug mode.
-C MACs Long version –combine. Merge the given APs to a virtual one.
-D none Long version –wep-decloak. Run in WEP decloak mode.
-V none Long version –visual-inspection. Run in visual inspection mode.
-1 none Long version –oneshot. Run in oneshot mode.
-S none WPA cracking speed test.

Usage Examples

WEP

The simplest case is to crack a WEP key. If you want to try this out yourself, here is a test file.
The key to the test file matches the screen image above, it does not match the following
example.

aircrack-ng 128bit.ivs
Where:

• 128bit.ivs is the file name containing IVS.

The program responds:

 Opening 128bit.ivs
 Read 684002 packets.

 # BSSID ESSID Encryption

 1 00:14:6C:04:57:9B WEP (684002 IVs)

 Choosing first network as target.

If there were multiple networks contained in the file then you are given the option to select
which one you want. By default, aircrack-ng assumes 128 bit encryption.

The cracking process starts and once cracked, here is what it looks like:

 Aircrack-ng 0.7 r130

 [00:00:10] Tested 77 keys (got 684002 IVs)

 KB depth byte(vote)
 0 0/ 1 AE(199) 29(27) 2D(13) 7C(12) FE(12) FF(6) 39(5) 2C(3) 00(0)
08(0)
 1 0/ 3 66(41) F1(33) 4C(23) 00(19) 9F(19) C7(18) 64(9) 7A(9) 7B(9)
F6(9)
 2 0/ 2 5C(89) 52(60) E3(22) 10(20) F3(18) 8B(15) 8E(15) 14(13) D2(11)
47(10)
 3 0/ 1 FD(375) 81(40) 1D(26) 99(26) D2(23) 33(20) 2C(19) 05(17) 0B(17)
35(17)

http://download.aircrack-ng.org/wiki-files/other/test.ivs

 4 0/ 2 24(130) 87(110) 7B(32) 4F(25) D7(20) F4(18) 17(15) 8A(15) CE(15)
E1(15)
 5 0/ 1 E3(222) 4F(46) 40(45) 7F(28) DB(27) E0(27) 5B(25) 71(25) 8A(25)
65(23)
 6 0/ 1 92(208) 63(58) 54(51) 64(35) 51(26) 53(25) 75(20) 0E(18) 7D(18)
D9(18)
 7 0/ 1 A9(220) B8(51) 4B(41) 1B(39) 3B(23) 9B(23) FA(23) 63(22) 2D(19)
1A(17)
 8 0/ 1 14(1106) C1(118) 04(41) 13(30) 43(28) 99(25) 79(20) B1(17) 86(15)
97(15)
 9 0/ 1 39(540) 08(95) E4(87) E2(79) E5(59) 0A(44) CC(35) 02(32) C7(31)
6C(30)
 10 0/ 1 D4(372) 9E(68) A0(64) 9F(55) DB(51) 38(40) 9D(40) 52(39) A1(38)
54(36)
 11 0/ 1 27(334) BC(58) F1(44) BE(42) 79(39) 3B(37) E1(34) E2(34) 31(33)
BF(33)

 KEY FOUND! [AE:66:5C:FD:24:E3:92:A9:14:39:D4:27:4B]

NOTE: The ASCII WEP key is displayed only when 100% of the hex key can be converted
to ASCII.

This key can then be used to connect to the network.

Next, we look at cracking WEP with a dictionary. In order to do this, we need dictionary files
with ascii or hexadecimal keys to try. Remember, a single file can only have ascii or
hexadecimal keys in it, not both.

WEP keys can be entered in hexadecimal or ascii. The following table describes how many
characters of each type is required in your files.

WEP key length
in bits

Hexadecimal
Characters

Ascii
Characters

64 10 5
128 26 13
152 32 16
256 58 29

Example 64 bit ascii key: “ABCDE”
Example 64 bit hexadecimal key: “12:34:56:78:90” (Note the ”:” between each two
characters.)
Example 128 bit ascii key: “ABCDEABCDEABC”
Example 128 bit hexadecimal key: “12:34:56:78:90:12:34:56:78:90:12:34:56”

To WEP dictionary crack a 64 bit key:

aircrack-ng -w h:hex.txt,ascii.txt -a 1 -n 64 -e teddy wep10-01.cap

Where:

• -w h:hex.txt,ascii.txt is the list of files to use. For files containing hexadecimal values,
you must put a “h:” in front of the file name.

• -a 1 says that it is WEP
• -n 64 says it is 64 bits. Change this to the key length that matches your dictionary files.

• -e teddy is to optionally select the access point. Your could also use the ”-b” option to
select based on MAC address

• wep10-01.cap is the name of the file containing the data. It can be the full packet or
an IVs only file. It must contain be a minimum of four IVs.

Here is a sample of the output:

 Aircrack-ng 0.7 r247

 [00:00:00] Tested 2 keys (got 13 IVs)

 KB depth byte(vote)
 0 0/ 0 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0)
00(0)
 1 0/ 0 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0)
00(0)
 2 0/ 0 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0)
00(0)
 3 0/ 0 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0)
00(0)
 4 0/ 0 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0) 00(0)
00(0)

 KEY FOUND! [12:34:56:78:90]
 Probability: 100%

Lets look at a PTW attack example. Remember that this method requires arp request/reply
packets as input. It must be the full packet and not just the IVs, meaning that the ”-- ivs”
option cannot be used when running airodump-ng. As well, it only works for 64 and 128 bit
WEP encryption.

Enter the following command:

 aircrack-ng -z ptw*.cap

Where:

• -z means use the PTW methodology to crack the wep key. Note: in v1.x, this is the
default attack mode; use -K to revert to Korek.

• ptw*.cap are the capture files to use.

The systems responds:

 Opening ptw-01.cap
 Read 171721 packets.

 # BSSID ESSID Encryption

 1 00:14:6C:7E:40:80 teddy WEP (30680 IVs)

 Choosing first network as target.

Then:

 Aircrack-ng 0.9

 [00:01:18] Tested 0/140000 keys (got 30680 IVs)

 KB depth byte(vote)

 0 0/ 1 12(170) 35(152) AA(146) 17(145) 86(143) F0(143) AE(142) C5(142) D4(142)
50(140)
 1 0/ 1 34(163) BB(160) CF(147) 59(146) 39(143) 47(142) 42(139) 3D(137) 7F(137)
18(136)
 2 0/ 1 56(162) E9(147) 1E(146) 32(146) 6E(145) 79(143) E7(142) EB(142) 75(141)
31(140)
 3 0/ 1 78(158) 13(156) 01(152) 5F(151) 28(149) 59(145) FC(145) 7E(143) 76(142)
92(142)
 4 0/ 1 90(183) 8B(156) D7(148) E0(146) 18(145) 33(145) 96(144) 2B(143) 88(143)
41(141)

 KEY FOUND! [12:34:56:78:90]
 Decrypted correctly: 100%

WPA

Now onto cracking WPA/WPA2 passphrases. Aircrack-ng can crack either types.

aircrack-ng -w password.lst *.cap

Where:

• -w password.lst is the name of the password file. Remember to specify the full path if
the file is not located in the same directory.

• *.cap is name of group of files containing the captured packets. Notice in this case
that we used the wildcard * to include multiple files.

The program responds:

 Opening wpa2.eapol.cap
 Opening wpa.cap
 Read 18 packets.

 # BSSID ESSID Encryption

 1 00:14:6C:7E:40:80 Harkonen WPA (1 handshake)
 2 00:0D:93:EB:B0:8C test WPA (1 handshake)

 Index number of target network ?

Notice in this case that since there are multiple networks we need to select which one to
attack. We select number 2. The program then responds:

 Aircrack-ng 0.7 r130

 [00:00:03] 230 keys tested (73.41 k/s)

 KEY FOUND! [biscotte]

 Master Key : CD D7 9A 5A CF B0 70 C7 E9 D1 02 3B 87 02 85 D6
 39 E4 30 B3 2F 31 AA 37 AC 82 5A 55 B5 55 24 EE

 Transcient Key : 33 55 0B FC 4F 24 84 F4 9A 38 B3 D0 89 83 D2 49
 73 F9 DE 89 67 A6 6D 2B 8E 46 2C 07 47 6A CE 08
 AD FB 65 D6 13 A9 9F 2C 65 E4 A6 08 F2 5A 67 97

 D9 6F 76 5B 8C D3 DF 13 2F BC DA 6A 6E D9 62 CD

 EAPOL HMAC : 52 27 B8 3F 73 7C 45 A0 05 97 69 5C 30 78 60 BD

Now you have the passphrase and can connect to the network.

Usage Tips

General approach to cracking WEP keys

This needs updating for v1.x!

Clearly, the simplest approach is just to enter “aircrack-ng captured-data.cap” and let it go.
Having said that, there are some techniques to improve your chances of finding the WEP key
quickly. There is no single magic set of steps. The following describes some approaches
which tend to yield the key faster. Unless you are comfortable with experimentation, leave
well enough alone and stick to the simple approach.

If you are capturing arp request/reply packets, then the fastest approach is to use “aircrack-ng
-z <data packet capture files>”. You can then skip the balance of this section since it will find
the key very quickly assuming you have collected sufficient arp request/reply packets! NOTE:
-z is the default attack mode in aircrack-ng v1.x; use -K to revert to the attack mode used in
previous versions.

The overriding technique is capture as much data as possible. That is the single most
important task. The number of initialization vectors (IVs) that you need to determine the
WEP key varies dramatically by key length and access point. Typically you need 250,000 or
more unique IVs for 64 bit keys and 1.5 million or more for 128 bit keys. Clearly a lot more
for longer key bit lengths. Then there is luck. There will be times that the WEP key can be
determined with as few as 50,000 IVs although this is rare. Conversely, there will be times
when you will need mulitple millions of IVs to crack the WEP key. The number of IVs is
extremely hard to predict since some access points are very good at eliminating IVs that lead
the WEP key.

Generally, don't try to crack the WEP key until you have 200,000 IVs or more. If you start
too early, aircrack tends to spend too much time brute forcing keys and not properly applying
the statistical techniques. Start by trying 64 bit keys “aircrack-ng -n 64 captured-data.cap”. If
they are using a 64 bit WEP, it can usually be cracked in less then 5 minutes (generally less
then 60 seconds) with relatively few IVs. It is surprising how many APs only use 64 bit keys.
If it does not find the 64 bit key in 5 minutes, restart aircrack in the generic mode: “aircrack-
ng captured-data.cap”. Then at each 100,000 IVs mark, retry the “aircrack-ng -n 64 captured-
data.cap” for 5 minutes.

Once you hit 600,000 IVs, switch to testing 128 bit keys. At this point it is unlikely (but not
impossible) that it is a 64 bit key and 600,000 IVs did not crack it. So now try “aircrack-ng
captured-data.cap”.

Once you hit 2 million IVs, try changing the fudge factor to ”-f 4”. Run for at least 30
minutes to one hour. Retry, increasing the fudge factor by adding 4 to it each time. Another

time to try increasing the fudge factor is when aircrack-ng stops because it has tried all the
keys.

All the while, keep collecting data. Remember the golden rule, “the more IVs the better”.

Also check out the next section on how to determine which options to use as these can
significantly speed up cracking the WEP key. For example, if the key is all numeric, then it
can take as few as 50,000 IVs to crack a 64 bit key with the ”-t” versus 200,000 IVs without
the ”-t”. So if you have a hunch about the nature of the WEP key, it is worth trying a few
variations.

How to determine which options to use

While aircrack-ng is running, you mostly just see the beginning of the key. Although the
secret WEP key is unknown at this point, there may be clues to speed things up. If the key
bytes have a fairly large number of votes, then they are likely 99.5% correct. So lets look at
what you can do with these clues.

If the bytes (likely secret keys) are for example: 75:47:99:22:50 then it is quite obvious, that
the whole key may consist only of numbers, like the first 5 bytes. So it MAY improve your
cracking speed to use the -t option only when trying such keys. See Wikipedia Binary Coded
Decimal for a description of what characters -t looks for.

If the bytes are 37:30:31:33:36 which are all numeric values when converted to Ascii, it is a
good idea to use -h option. The FAQ entry Converting hex characters to ascii provides links
to determine if they are all numeric.

And if the first few bytes are something like 74:6F:70:73:65, and upon entering them into
your hexeditor or the links provided in the previous sentence, you see that they may form the
beginning of some word, then it seems likely an ASCII key is used, thus you activate -c
option to check only printable ASCII keys.

If you know the start of the WEP key in hexadecimal, you can enter with the ”-d” parameter.
Lets assume you know the WEP key is “0123456789” in hexadecimal then you could use ”-d
01” or ”-d 0123”, etc.

Another option to try when having problems determining the WEP key, is the ”-x2” option
which causes the last two keybytes to be brute forced instead of the default of one.

How to convert the HEX WEP key to ASCII?

See the next entry.

How to use the key

If aircrack-ng determines the key, it is presented to you in hexadecimal format. It typically
looks like:

 KEY FOUND! [11:22:33:44:55]

http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://www.aircrack-ng.org/doku.php?id=faq#how_do_i_convert_the_hex_characters_to_ascii

The length will vary based on the WEP bit key length used. See the table above which
indicates the number of hexadecimal characters for the various WEP key bit lenghts.

You may use this key without the ”:” in your favorite client. This means you enter
“1122334455” into the client and specify that the key is in hexadecimal format. Remember
that most keys cannot be converted to ASCII format. If the HEX key is in fact valid ASCII
characters, the ASCII will also be displayed.

If you wish to experiment a bit with converting HEX to ASCII, see this FAQ entry.

We do not specifically provide support or the details on how to configure your wireless card
to connect to the AP. For linux, this page has an excellent writeup. As well, search the
internet for this information regarding linux and Windows systems. As well, see the
documentation for your card's wireless client. If you are using linux, check the mailing lists
and forums specific to the distribution.

Additionally, Aircrack-ng prints out a message indicating the likelihood that the key is
correct. It will look something similar to “Probability: 100%”. Aircrack-ng tests the key
against some packets to confirm the key is correct. Based on these tests, it prints the
probability of a correct key.

Also remember we do not support or endorse people accessing networks which do not belong
to them.

How to convert the hex key back to the passphrase?

People quite often ask if the hexadecimal key found by aircrack-ng can be converted
backwords to the original “passphrase”. The simple answer is “NO”.

To understand why this is so, lets take a look at how these passphrases are converted into the
hexadecimal keys used in WEP.

Some vendors have a wep key generator which “translates” a passphrase into a hexadecimal
WEP key. There are no standards for this. Very often they just pad short phrases with blanks,
zeroes or other characters. However, usually the passphrases are filled with zeros up to the
length of 16 bytes, and afterwards the MD5SUM of this bytestream will be the WEP Key.
Remember, every vendor can do this in a slightly different way, and so they may not be
compatible.

So there is no way to know the how long the original passphrase was. It could as short as one
character. It all depends on the who developed the software.

Knowing all this, if you still wish to try to obtain the original passphrase, Latin SuD has a
tool which attempts reverse the process. Click here for the tool.

Nonetheless, these passphrases result in a WEP Key that is as easily cracked as every other
WEP Key. The exact conversion method really does not matter in the end.

Keep in mind that wep passwords that look like “plain text” might either be ASCII or
PASSPHRASE. Most (all) systems support ASCII and are the default, but some support

http://www.aircrack-ng.org/doku.php?id=faq#how_do_i_convert_the_hex_characters_to_ascii
http://wirelessdefence.org/Contents/LinuxWirelessCommands.htm
http://www.latinsud.com/wepconv.html

passphrase and those which support it require users to specify whether it's ascii or a
passphrase. Passphrases can be any arbitrary length. ASCII are usually limited to 5 or 13
(wep40 and wep104).

As a side note, Windows WZC only supports fixed length hex or ascii keys, so the shortest
inputable key is 5 characters long. See the table above on this page regarding how many
characters are needed for specific key lengths.

Sample files to try

There are a number of sample files that you can try with aircrack-ng to gain experience:

• wpa.cap: This is a sample file with a wpa handshake. It is located in the “test”
directory of the install files. The passphrase is “biscotte”. Use the password file
(password.lst) which is in the same directory.

• wpa2.eapol.cap: This is a sample file with a wpa2 handshake. It is located in the “test”
directory of the install files. The passphrase is “12345678”. Use the password file
(password.lst) which is in the same directory.

• test.ivs: This is a 128 bit WEP key file. The key is
“AE:5B:7F:3A:03:D0:AF:9B:F6:8D:A5:E2:C7”.

• ptw.cap: This is a 64 bit WEP key file suitable for the PTW method. The key is
“1F:1F:1F:1F:1F”.

Dictionary Format

Dictionaries used for WPA/WPA bruteforcing need to contain one passphrase per line.

The linux and Windows end of line format is slightly different. See this Wikipedia entry for
details. There are conversion tools are available under both linux and Windows which can
convert one format to another. As well, editors are available under both operating systems
which can edit both formats correctly. It is up to the reader to use an Internet search engine to
find the appropriate tools.

However both types should work with the linux or Windows versions of aircrack-ng. Thus,
you really don't need to convert back and forth.

Hexadecimal Key Dictionary

Although it is not part of aircrack-ng, it is worth mentioning an interesting piece of work is
by SuD. It is basically a wep hex dictionary already prepared and the program to run it:

 http://tv.latinsud.com/wepdict/

Tools to split capture files

There are times when you want to split capture files into smaller pieces. For example, files
with a large number of IVs can sometimes cause the PTW attack to fail. In this case, it is
worth splitting the file into smaller pieces and retrying the PTW attack.

So here are two tools to split capture files:

http://download.aircrack-ng.org/wiki-files/other/test.ivs
http://dl.aircrack-ng.org/ptw.cap
http://en.wikipedia.org/wiki/Line_feed

• http://www.badpenguin.co.uk/files/pcap-util
• http://www.badpenguin.co.uk/files/pcap-util2

Another technique is to use Wireshark / tshark. You can mark packets then same them to a
separate file.

How to extract WPA handshake from large capture files

Sometimes you have a very large capture file and would like to extract the WPA/WPA2
handshake packets from it to a separate file. The can be done with “tshark” which is a
command line version of the Wireshark suite. Installing the linux version of the Wireshark
suite on your system should also install tshark.

The following command will extract all handshake and beacon packets from your pcap
capture file and create a separate file with just those packets:

 tshark -r <input file name> -R "eapol || wlan.fc.type_subtype == 0x08" -w <output file name>

Remember you must use a pcap file as input, not an IVs file.

Other Tips

To specify multiple capture files at a time you can either use a wildcard such as * or specify
each file individually.

Examples:

• aircrack-ng -w password.lst wpa.cap wpa2.eapol.cap
• aircrack-ng *.ivs
• aircrack-ng something*.ivs

To specify multiple dictionaries at one time, enter them comma separated with no spaces.

Examples:

• aircrack-ng -w password.lst,secondlist.txt wpa2.eapol.cap
• aircrack-ng -w firstlist.txt,secondlist.txt,thirdlist.txt wpa2.eapol.cap

Aircrack-ng comes with a small dictionary called password.lst. The password.lst file is
located in the “test” directory of the source files. This FAQ entry has a list of web sites where
you can find extensive wordlists (dictionaries). Also see this thread on the Forum.

Determining the WPA/WPA2 passphrase is totally dependent on finding a dictionary entry
which matches the passphrase. So a quality dictionary is very important. You can search the
Internet for dictionaries to be used. There are many available.

The tutorials page has the following tutorial How to crack WPA/WPA2? which walks you
through the steps in detail.

http://www.badpenguin.co.uk/files/pcap-util
http://www.badpenguin.co.uk/files/pcap-util2
http://www.wireshark.org/
http://www.wireshark.org/
http://www.aircrack-ng.org/doku.php?id=faq#where_can_i_find_good_wordlists
http://forum.aircrack-ng.org/index.php?topic=1373
http://www.aircrack-ng.org/doku.php?id=tutorial
http://www.aircrack-ng.org/doku.php?id=cracking_wpa

As you have seen, if there are multiple networks in your files you need to select which one
you want to crack. Instead of manually doing a selection, you can specify which network you
want by essid or bssid on the command line. This is done with the -e or -b parameters.

Another trick is to use John the Ripper to create specific passwords for testing. Lets say you
know the passphrase is the street name plus 3 digits. Create a custom rule set in JTR and run
something like this:

 john --stdout --wordlist=specialrules.lst --rules | aircrack-ng -e test -a
2 -w - /root/capture/wpa.cap

Remember that valid passwords are 8 to 63 characters in length. Here is a handy command to
ensure all passwords in a file meet this criteria:

 awk '{ if ((length($0) > 7) && (length($0) < 64)){ print $0 }}' inputfile

or

 grep -E '^.{8,63}$' < inputfile

Usage Troubleshooting

Error message "Please specify a dictionary (option -w)"

This means you have misspelt the file name of the dictionary or it is not in the current
directory. If the dictionary is located in another directory, you must provide the full path to
the dictionary.

Error message "fopen(dictionary)failed: No such file or directory"

This means you have misspelt the file name of the dictionary or it is not in the current
directory. If the dictionary is located in another directory, you must provide the full path to
the dictionary.

Negative votes

There will be times when key bytes will have negative values for votes. As part of the
statistical analysis, there are safeguards built in which subtract votes for false positives. The
idea is to cause the results to be more accurate. When you get a lot of negative votes,
something is wrong. Typically this means you are trying to crack a dynamic key such as
WPA/WPA2 or the WEP key changed while you were capturing the data. Remember,
WPA/WPA2 can only be cracked via a dictionary technique. If the WEP key has changed,
you will need to start gathering new data and start over again.

"An ESSID is required. Try option -e" message

You have successfully captured a handshake then when you run aircrack-ng, you get similar
output:

 Opening wpa.cap

 Read 4 packets.

 # BSSID ESSID ENCRYPTION
 1 00:13:10:F1:15:86 WPA (1) handshake
 Choosing first network as target.

 An ESSID is required. Try option -e.

Solution: You need to specify the real essid, otherwise the key cannot be calculated, as the
essid is used as salt when generating the pairwise master key (PMK) out of the pre-shared
key (PSK).

So just use -e ”<REAL_ESSID>” instead of -e ”” and aircrack-ng should find the passphrase.

The PTW method does not work

One particularly important constraint is that it only works against arp request/reply packets. It
cannot be used against any other data packets. So even if your data capture file contains a
large number of data packets, if there insufficient arp request/reply packets, it will not work.
Using this technique, 64-bit WEP can be cracked with as few as 20,000 data packets and 128-
bit WEP with 40,000 data packets. As well, it requires the full packet to be captured.
Meaning you cannot use the ”-- ivs” option when running airodump-ng. It also only works for
64 and 128 bit WEP encryption.

Error message "read(file header) failed: Success"

If you get the error message - “read(file header) failed: Success” or similar when running
aircrack-ng, there is likely an input file with zero (0) bytes. The input file could be a .cap
or .ivs file.

This is most likely to happen with wildcard input of many files such as:

 aircrack-ng -z -b XX:XX:XX:XX:XX:XX *.cap

Simply delete the files with zero bytes and run the command again.

WPA/WPA2 Handshake Analysis Fails

Capturing WPA/WPA2 handshakes can be very tricky. A capture file may end up containing
a subset of packets from various handshake attempts and/or handshakes from more then one
client. Currently aircrack-ng can sometimes fail to parse out the handshake properly. What
this means is that aircrack-ng will fail to find a handshake in the capture file even though one
exists.

If you are sure your capture file contains a valid handshake then use Wireshark or an
equivalent piece of software and manually pull out the beacon packet plus a set of handshake
packets.

There is an open trac ticket to correct this incorrect behavior.

http://trac.aircrack-ng.org/ticket/651

	Aircrack-ng
	Description
	Screenshot
	How does it work?
	Explanation of the Depth Field and Fudge Factor

	Usage
	Usage Examples
	WEP
	WPA

	Usage Tips
	General approach to cracking WEP keys
	How to determine which options to use
	How to convert the HEX WEP key to ASCII?
	How to use the key
	How to convert the hex key back to the passphrase?
	Sample files to try
	Dictionary Format
	Hexadecimal Key Dictionary
	Tools to split capture files
	How to extract WPA handshake from large capture files
	Other Tips

	Usage Troubleshooting
	Error message "Please specify a dictionary (option -w)"
	Error message "fopen(dictionary)failed: No such file or directory"
	Negative votes
	"An ESSID is required. Try option -e" message
	The PTW method does not work
	Error message "read(file header) failed: Success"
	WPA/WPA2 Handshake Analysis Fails

